所以我試圖學習與凱拉斯的ANN,因爲我聽說Theano或TensorFlow更簡單。我有許多問題是第一個與輸入層有關的問題。Keras和輸入層
到目前爲止,我有這行代碼作爲輸入:
model.add(Dense(3 ,input_shape=(2,), batch_size=50 ,activation='relu'))
現在我想添加到模型中的數據如下形狀:
Index(['stock_price', 'stock_volume', 'sentiment'], dtype='object')
[[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 1.42857143e-01]
[ 3.01440000e+02 7.87830000e+04 5.88235294e-02]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 0.00000000e+00]
[ 3.01440000e+02 7.87830000e+04 5.26315789e-02]]
我要打一個模型,看看我能否找到股票價格和tweet情緒之間的相關性,我只是把數量放在那裏,因爲最終,我想看看它是否也能找到一個模式。
所以,我的第二個問題是運行我的輸入層與幾個不同的參數後,我得到這個問題,我不能解釋。所以,當我跑這條線:
model.add(Dense(3 ,input_shape=(2,), batch_size=50 ,activation='relu'))
與以下行我得到這個輸出錯誤:
ValueError: Error when checking model input: expected dense_1_input to have shape (50, 2) but got array with shape (50, 3)
但是,當我輸入形狀改變成請求「3」我得到這個錯誤:
ValueError: Error when checking model target: expected dense_2 to have shape (50, 1) but got array with shape (50, 302)
爲什麼在錯誤信息中2變成'302'?
我可能忽略了一些真正的基本問題,因爲這是我嘗試實現的第一個神經網絡,因爲我以前只使用Weka的應用程序。
反正這裏是我的全部代碼的副本:
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Input
from keras.optimizers import SGD
from keras.utils import np_utils
import pymysql as mysql
import pandas as pd
import config
import numpy
import pprint
model = Sequential()
try:
sql = "SELECT stock_price, stock_volume, sentiment FROM tweets LIMIT 50"
con = mysql.connect(config.dbhost, config.dbuser, config.dbpassword, config.dbname, charset='utf8mb4', autocommit=True)
results = pd.read_sql(sql=sql, con=con, columns=['stock_price', 'stock_volume', 'sentiment'])
finally:
con.close()
npResults = results.as_matrix()
cols = np_utils.to_categorical(results['stock_price'].values)
data = results.values
print(cols)
# inputs:
# 1st = stock price
# 2nd = tweet sentiment
# 3rd = volume
model.add(Dense(3 ,input_shape=(3,), batch_size=50 ,activation='relu'))
model.add(Dense(20, activation='linear'))
sgd = SGD(lr=0.3, decay=0.01, momentum=0.2)
model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.summary()
model.fit(x=data, y=cols, epochs=100, batch_size=100, verbose=2)
編輯:
這裏是所有的輸出我得到的FOM控制檯:
C:\Users\Def\Anaconda3\python.exe C:/Users/Def/Dropbox/Dissertation/ann.py
Using Theano backend.
C:\Users\Def\Dropbox\Dissertation
[[ 0. 0. 0. ..., 0. 0. 1.]
[ 0. 0. 0. ..., 0. 0. 1.]
[ 0. 0. 0. ..., 0. 0. 1.]
...,
[ 0. 0. 0. ..., 0. 0. 1.]
[ 0. 0. 0. ..., 0. 0. 1.]
[ 0. 0. 0. ..., 0. 0. 1.]]
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (50, 3) 12
_________________________________________________________________
dense_2 (Dense) (50, 20) 80
=================================================================
Traceback (most recent call last):
File "C:/Users/Def/Dropbox/Dissertation/ann.py", line 38, in <module>
model.fit(x=data, y=cols, epochs=100, batch_size=100, verbose=2)
File "C:\Users\Def\Anaconda3\lib\site-packages\keras\models.py", line 845, in fit
initial_epoch=initial_epoch)
File "C:\Users\Def\Anaconda3\lib\site-packages\keras\engine\training.py", line 1405, in fit
batch_size=batch_size)
File "C:\Users\Def\Anaconda3\lib\site-packages\keras\engine\training.py", line 1299, in _standardize_user_data
exception_prefix='model target')
File "C:\Users\Def\Anaconda3\lib\site-packages\keras\engine\training.py", line 133, in _standardize_input_data
str(array.shape))
ValueError: Error when checking model target: expected dense_2 to have shape (50, 20) but got array with shape (50, 302)
Total params: 92.0
Trainable params: 92
Non-trainable params: 0.0
_________________________________________________________________
Process finished with exit code 1
首先,您應該定義這是迴歸還是分類問題,以及要預測的目標值及其維數。 –