從擴展精度浮點數(80位值,也稱爲「long」雙倍「在一些編譯器)到MSVC win32/win64雙倍(64位)?MSVC win32:將擴展精度浮點數(80位)轉換爲雙精度浮點數(64位)
MSVC目前(截至2010年)假設「long double」是「double」的同義詞。
我大概可以在inline asm中編寫fld/fstp彙編程序對,但內聯asm不適用於MSVC中的win64代碼。我是否需要將此彙編代碼移到單獨的.asm文件中?這真的是沒有好的解決方案嗎?
從擴展精度浮點數(80位值,也稱爲「long」雙倍「在一些編譯器)到MSVC win32/win64雙倍(64位)?MSVC win32:將擴展精度浮點數(80位)轉換爲雙精度浮點數(64位)
MSVC目前(截至2010年)假設「long double」是「double」的同義詞。
我大概可以在inline asm中編寫fld/fstp彙編程序對,但內聯asm不適用於MSVC中的win64代碼。我是否需要將此彙編代碼移到單獨的.asm文件中?這真的是沒有好的解決方案嗎?
只是做這在x86代碼...
.686P
.XMM
_TEXT SEGMENT
EXTRN __fltused:DWORD
PUBLIC _cvt80to64
PUBLIC _cvt64to80
_cvt80to64 PROC
mov eax, dword ptr [esp+4]
fld TBYTE PTR [eax]
ret 0
_cvt80to64 ENDP
_cvt64to80 PROC
mov eax, DWORD PTR [esp+12]
fld QWORD PTR [esp+4]
fstp TBYTE PTR [eax]
ret 0
_cvt64to80 ENDP
ENDIF
_TEXT ENDS
END
如果您的編譯器/平臺本身不支持80位浮點值,則必須自行解碼該值。
假設80位浮點存儲一個字節的緩衝區內,坐落在一個特定的偏移量,你可以做這樣的:
float64 C_IOHandler::readFloat80(IColl<uint8> buffer, uint32 *ref_offset)
{
uint32 &offset = *ref_offset;
//80 bit floating point value according to the IEEE-754 specification and the Standard Apple Numeric Environment specification:
//1 bit sign, 15 bit exponent, 1 bit normalization indication, 63 bit mantissa
float64 sign;
if ((buffer[offset] & 0x80) == 0x00)
sign = 1;
else
sign = -1;
uint32 exponent = (((uint32)buffer[offset] & 0x7F) << 8) | (uint32)buffer[offset + 1];
uint64 mantissa = readUInt64BE(buffer, offset + 2);
//If the highest bit of the mantissa is set, then this is a normalized number.
float64 normalizeCorrection;
if ((mantissa & 0x8000000000000000) != 0x00)
normalizeCorrection = 1;
else
normalizeCorrection = 0;
mantissa &= 0x7FFFFFFFFFFFFFFF;
offset += 10;
//value = (-1)^s * (normalizeCorrection + m/2^63) * 2^(e - 16383)
return (sign * (normalizeCorrection + (float64)mantissa/((uint64)1 << 63)) * g_Math->toPower(2, (int32)exponent - 16383));
}
這是我做了,而且它編譯與克細++ 4.5.0。它當然不是一個非常快速的解決方案,但至少是一個功能強大的解決方案。這個代碼也應該可以移植到不同的平臺上,儘管我沒有嘗試過。
玩過與給定答案,結束了這一點。
#include <cmath>
#include <limits>
#include <cassert>
#ifndef _M_X64
__inline __declspec(naked) double _cvt80to64(void*) {
__asm {
// PUBLIC _cvt80to64 PROC
mov eax, dword ptr [esp+4]
fld TBYTE PTR [eax]
ret 0
// _cvt80to64 ENDP
}
}
#endif
#pragma pack(push)
#pragma pack(2)
typedef unsigned char tDouble80[10];
#pragma pack(pop)
typedef struct {
unsigned __int64 mantissa:64;
unsigned int exponent:15;
unsigned int sign:1;
} tDouble80Struct;
inline double convertDouble80(const tDouble80& val)
{
assert(10 == sizeof(tDouble80));
const tDouble80Struct* valStruct = reinterpret_cast<const tDouble80Struct*>(&val);
const unsigned int mask_exponent = (1 << 15) - 1;
const unsigned __int64 mantissa_high_highestbit = unsigned __int64(1) << 63;
const unsigned __int64 mask_mantissa = (unsigned __int64(1) << 63) - 1;
if (mask_exponent == valStruct->exponent) {
if(0 == valStruct->mantissa) {
return (0 != valStruct->sign) ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
}
// highest mantissa bit set means quiet NaN
return (0 != (mantissa_high_highestbit & valStruct->mantissa)) ? std::numeric_limits<double>::quiet_NaN() : std::numeric_limits<double>::signaling_NaN();
}
// 80 bit floating point value according to the IEEE-754 specification and
// the Standard Apple Numeric Environment specification:
// 1 bit sign, 15 bit exponent, 1 bit normalization indication, 63 bit mantissa
const double sign(valStruct->sign ? -1 : 1);
//If the highest bit of the mantissa is set, then this is a normalized number.
unsigned __int64 mantissa = valStruct->mantissa;
double normalizeCorrection = (mantissa & mantissa_high_highestbit) != 0 ? 1 : 0;
mantissa &= mask_mantissa;
//value = (-1)^s * (normalizeCorrection + m/2^63) * 2^(e - 16383)
return (sign * (normalizeCorrection + double(mantissa)/mantissa_high_highestbit) * pow(2.0, int(valStruct->exponent) - 16383));
}
我剛寫了這一個。它使用位操作從IEEE擴展精確數構造一個IEEE雙數。它需要10個字節的擴展精度數以小尾數格式:
typedef unsigned long long uint64;
double makeDoubleFromExtended(const unsigned char x[10])
{
int exponent = (((x[9] << 8) | x[8]) & 0x7FFF);
uint64 mantissa =
((uint64)x[7] << 56) | ((uint64)x[6] << 48) | ((uint64)x[5] << 40) | ((uint64)x[4] << 32) |
((uint64)x[3] << 24) | ((uint64)x[2] << 16) | ((uint64)x[1] << 8) | (uint64)x[0];
unsigned char d[8] = {0};
double result;
d[7] = x[9] & 0x80; /* Set sign. */
if ((exponent == 0x7FFF) || (exponent == 0))
{
/* Infinite, NaN or denormal */
if (exponent == 0x7FFF)
{
/* Infinite or NaN */
d[7] |= 0x7F;
d[6] = 0xF0;
}
else
{
/* Otherwise it's denormal. It cannot be represented as double. Translate as singed zero. */
memcpy(&result, d, 8);
return result;
}
}
else
{
/* Normal number. */
exponent = exponent - 0x3FFF + 0x03FF; /*< exponent for double precision. */
if (exponent <= -52) /*< Too small to represent. Translate as (signed) zero. */
{
memcpy(&result, d, 8);
return result;
}
else if (exponent < 0)
{
/* Denormal, exponent bits are already zero here. */
}
else if (exponent >= 0x7FF) /*< Too large to represent. Translate as infinite. */
{
d[7] |= 0x7F;
d[6] = 0xF0;
memset(d, 0x00, 6);
memcpy(&result, d, 8);
return result;
}
else
{
/* Representable number */
d[7] |= (exponent & 0x7F0) >> 4;
d[6] |= (exponent & 0xF) << 4;
}
}
/* Translate mantissa. */
mantissa >>= 11;
if (exponent < 0)
{
/* Denormal, further shifting is required here. */
mantissa >>= (-exponent + 1);
}
d[0] = mantissa & 0xFF;
d[1] = (mantissa >> 8) & 0xFF;
d[2] = (mantissa >> 16) & 0xFF;
d[3] = (mantissa >> 24) & 0xFF;
d[4] = (mantissa >> 32) & 0xFF;
d[5] = (mantissa >> 40) & 0xFF;
d[6] |= (mantissa >> 48) & 0x0F;
memcpy(&result, d, 8);
printf("Result: 0x%016llx", *(uint64*)(&result));
return result;
}
我認爲'if(exponent <= 0)'的處理意味着可以表示爲binary64 subnormals的數字最終表示爲'0.0'。 – 2013-09-17 16:57:56
修正了它。確切的'exponent == 0'的情況下的確可以產生一個denormal double。 – Calmarius 2013-09-17 20:08:05
這仍然不是很正確:有些情況下,當'exponent'介於-52和0之間(在代碼的那一點)時,必須做的事情是**大致**到使隱含位顯式化,通過'-exponent'移動要使用的有效數字,並將'exponent'設置爲零。 OP最終使用'FSTP',所以它不是非常重要,但是你需要在你的模擬器中爲'FSTP'執行它。:) – 2013-09-18 13:33:02
此代碼假定數據爲大端格式。 – Matt 2012-04-28 05:41:07