0
關卡片斷產生:Keras:加載檢查點的權重由HDF5在多重GPU
checkpointer = ModelCheckpoint(filepath=os.path.join(savedir, "mid/weights.{epoch:02d}.hd5"), monitor='val_loss', verbose=1, save_best_only=False, save_weights_only=False)
hist = model.fit_generator(
gen.generate(batch_size = batch_size, nb_classes=nb_classes), samples_per_epoch=593920, nb_epoch=nb_epoch, verbose=1, callbacks=[checkpointer], validation_data = gen.vld_generate(VLD_PATH, batch_size = 64, nb_classes=nb_classes), nb_val_samples=10000
)
我訓練的轉儲在HDF5格式mid
文件多GPU主機上我的模型。當我與keras.load_weights('mid')
他們裝單GPU機器上,有人提出了一個錯誤:
Using TensorFlow backend.
Traceback (most recent call last):
File "server.py", line 171, in <module>
model = load_model_and_weights('zhch.yml', '7_weights.52.hd5')
File "server.py", line 16, in load_model_and_weights
model.load_weights(os.path.join('model', weights_name))
File "/home/lz/code/ProjectGo/meta/project/libpolicy-server/.virtualenv/lib/python3.5/site-packages/keras/engine/topology.py", line 2701, in load_weights
self.load_weights_from_hdf5_group(f)
File "/home/lz/code/ProjectGo/meta/project/libpolicy-server/.virtualenv/lib/python3.5/site-packages/keras/engine/topology.py", line 2753, in load_weights_from_hdf5_group
str(len(flattened_layers)) + ' layers.')
ValueError: You are trying to load a weight file containing 1 layers into a model with 21 layers.
有什麼辦法可以載入多GPU的單GPU計算機上生成檢查點的權重?似乎沒有問題的凱拉斯討論這個問題,因此任何幫助將不勝感激。
你能否在同一個多GPU機器中加載?錯誤消息說有一些層不匹配。模型有多少層? –
@YaoZhang Weights可以在源機器上加載'model.load_weights()'。 multi-GPU機器上的'model.yml'和model都有21層。 – lz96