2
我第一次使用凍結在我的數據集ResNet50層訓練有素以下:無法加載微調權重Keras與ResNet50
model_r50 = ResNet50(weights='imagenet', include_top=False)
model_r50.summary()
input_layer = Input(shape=(img_width,img_height,3),name = 'image_input')
output_r50 = model_r50(input_layer)
fl = Flatten(name='flatten')(output_r50)
dense = Dense(1024, activation='relu', name='fc1')(fl)
drop = Dropout(0.5, name='drop')(dense)
pred = Dense(nb_classes, activation='softmax', name='predictions')(drop)
fine_model = Model(outputs=pred,inputs=input_layer)
for layer in model_r50.layers:
layer.trainable = False
print layer
fine_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
fine_model.summary()
然後我嘗試微調其與層使用解凍如下:
model_r50 = ResNet50(weights='imagenet', include_top=False)
model_r50.summary()
input_layer = Input(shape=(img_width,img_height,3),name = 'image_input')
output_r50 = model_r50(input_layer)
fl = Flatten(name='flatten')(output_r50)
dense = Dense(1024, activation='relu', name='fc1')(fl)
drop = Dropout(0.5, name='drop')(dense)
pred = Dense(nb_classes, activation='softmax', name='predictions')(drop)
fine_model = Model(outputs=pred,inputs=input_layer)
weights = 'val54_r50.01-0.86.hdf5'
fine_model.load_weights('models/'+weights)
fine_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
fine_model.summary()
但我從這個地方得到這個錯誤。我只是解凍網絡,並沒有改變任何東西!
load_weights_from_hdf5_group(f, self.layers)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 3008, in load_weights_from_hdf5_group
K.batch_set_value(weight_value_tuples)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 2189, in batch_set_value
get_session().run(assign_ops, feed_dict=feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 778, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 961, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (128,) for Tensor u'Placeholder_140:0', which has shape '(512,)'
而且不一致。大部分時間我都會有不同的形狀。這是爲什麼發生?如果我只是將ResNet更改爲VGG19,則不會發生這種情況。 Keras中的ResNet有問題嗎?
感謝您的回答。我正在嘗試這種方法,並等待看它是否有效! – Hooli