2013-02-17 54 views
2

我有一個圖像特徵矩陣A是n * m * 31矩陣填充進行過濾,我有B作爲對象過濾器k * l * 31。我想獲得輸出矩陣C是p * r * 31,圖像A的大小沒有填充。我嘗試編寫一個CUDA代碼來運行A上的過濾器B並獲得C.我假定每個過濾操作都在A上,並且過濾器B被一個線程塊佔據,所以在每個線程塊內會有k * l操作。並且每個移位的濾波操作將在不同的線程塊完成。對於A(0,0),將在thread_block(0,0)上進行過濾,對於A(0,1)將在thread_block(1,0)上進行過濾,以此類推。另外,我的第三維爲31.第三維的每個空間都將自行計算。因此,通過對矩陣進行正確的三維索引,我可能能夠以非常平行的形式進行所有操作。用於圖像過濾的3d CUDA內核索引?

所以操作

A n*m*31 X B k*l*31 = C p*r*31 

我怎麼能這樣做內核的索引的有效運作?

回答

9

下面是我寫的一些代碼,用於大致描述您所描述的內容。

它創建了一個3D數據集(稱爲cell,但它絕不會比您的陣列A),用隨機數據填充它,然後計算所得到的3D輸出陣列(稱爲node,但它絕不會比你的數組C)基於A中的數據。 A的數據大小大於C(您稱之爲「填充」)的大小,以允許將函數B通過A的邊界元素。在我的情況下,函數B只是簡單地找到與B的大小(我稱爲WSIZE,創建3D區域WSIZE x WSIZE x WSIZE)相關聯的3D立方體積A中的最小值,並將結果存儲在C中。

此特定代碼嘗試通過將輸入A的某個區域複製到每個塊的共享內存來利用數據重用。每個塊計算多個輸出點(即,它計算B多次以填充C的區域)以利用相鄰計算的數據重用機會B. B

這可能有助於使您開始。你顯然必須用你想要的B函數替換B(我的最小查找代碼)。此外,您需要將B域從立方體修改爲任何類型的矩形棱鏡對應於您的B尺寸。這也會影響共享內存操作,因此您可能想要在第一次迭代時不需要共享內存,只是爲了使功能正確,然後添加共享內存優化以查看您可以獲得哪些好處。

#include <stdio.h> 
#include <stdlib.h> 
// these are just for timing measurments 
#include <time.h> 
// Computes minimum in a 3D volume, at each output point 
// To compile it with nvcc execute: nvcc -O2 -o grid3d grid3d.cu 
//define the window size (cubic volume) and the data set size 
#define WSIZE 6 
#define DATAXSIZE 100 
#define DATAYSIZE 100 
#define DATAZSIZE 20 
//define the chunk sizes that each threadblock will work on 
#define BLKXSIZE 8 
#define BLKYSIZE 8 
#define BLKZSIZE 8 

// for cuda error checking 
#define cudaCheckErrors(msg) \ 
    do { \ 
     cudaError_t __err = cudaGetLastError(); \ 
     if (__err != cudaSuccess) { \ 
      fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \ 
       msg, cudaGetErrorString(__err), \ 
       __FILE__, __LINE__); \ 
      fprintf(stderr, "*** FAILED - ABORTING\n"); \ 
      return 1; \ 
     } \ 
    } while (0) 
// device function to compute 3D volume minimum at each output point 
__global__ void cmp_win(int knode[][DATAYSIZE][DATAXSIZE], const int kcell[][DATAYSIZE+(WSIZE-1)][DATAXSIZE+(WSIZE-1)]) 
{ 
    __shared__ int smem[(BLKZSIZE + (WSIZE-1))][(BLKYSIZE + (WSIZE-1))][(BLKXSIZE + (WSIZE-1))]; 
    int tempnode, i, j, k; 
    int idx = blockIdx.x*blockDim.x + threadIdx.x; 
    int idy = blockIdx.y*blockDim.y + threadIdx.y; 
    int idz = blockIdx.z*blockDim.z + threadIdx.z; 
    if ((idx < (DATAXSIZE+WSIZE-1)) && (idy < (DATAYSIZE+WSIZE-1)) && (idz < (DATAZSIZE+WSIZE-1))){ 
     smem[threadIdx.z][threadIdx.y][threadIdx.x]=kcell[idz][idy][idx]; 
     if ((threadIdx.z > (BLKZSIZE - WSIZE)) && (idz < DATAZSIZE)) 
     smem[threadIdx.z + (WSIZE-1)][threadIdx.y][threadIdx.x] = kcell[idz + (WSIZE-1)][idy][idx]; 
     if ((threadIdx.y > (BLKYSIZE - WSIZE)) && (idy < DATAYSIZE)) 
     smem[threadIdx.z][threadIdx.y + (WSIZE-1)][threadIdx.x] = kcell[idz][idy+(WSIZE-1)][idx]; 
     if ((threadIdx.x > (BLKXSIZE - WSIZE)) && (idx < DATAXSIZE)) 
     smem[threadIdx.z][threadIdx.y][threadIdx.x + (WSIZE-1)] = kcell[idz][idy][idx+(WSIZE-1)]; 
     if ((threadIdx.z > (BLKZSIZE - WSIZE)) && (threadIdx.y > (BLKYSIZE - WSIZE)) && (idz < DATAZSIZE) && (idy < DATAYSIZE)) 
     smem[threadIdx.z + (WSIZE-1)][threadIdx.y + (WSIZE-1)][threadIdx.x] = kcell[idz+(WSIZE-1)][idy+(WSIZE-1)][idx]; 
     if ((threadIdx.z > (BLKZSIZE - WSIZE)) && (threadIdx.x > (BLKXSIZE - WSIZE)) && (idz < DATAZSIZE) && (idx < DATAXSIZE)) 
     smem[threadIdx.z + (WSIZE-1)][threadIdx.y][threadIdx.x + (WSIZE-1)] = kcell[idz+(WSIZE-1)][idy][idx+(WSIZE-1)]; 
     if ((threadIdx.y > (BLKYSIZE - WSIZE)) && (threadIdx.x > (BLKXSIZE - WSIZE)) && (idy < DATAYSIZE) && (idx < DATAXSIZE)) 
     smem[threadIdx.z][threadIdx.y + (WSIZE-1)][threadIdx.x + (WSIZE-1)] = kcell[idz][idy+(WSIZE-1)][idx+(WSIZE-1)]; 
     if ((threadIdx.z > (BLKZSIZE - WSIZE)) && (threadIdx.y > (BLKYSIZE - WSIZE)) && (threadIdx.x > (BLKXSIZE - WSIZE)) && (idz < DATAZSIZE) && (idy < DATAYSIZE) && (idx < DATAXSIZE)) 
     smem[threadIdx.z+(WSIZE-1)][threadIdx.y+(WSIZE-1)][threadIdx.x+(WSIZE-1)] = kcell[idz+(WSIZE-1)][idy+(WSIZE-1)][idx+(WSIZE-1)]; 
     } 
    __syncthreads(); 
    if ((idx < DATAXSIZE) && (idy < DATAYSIZE) && (idz < DATAZSIZE)){ 
     tempnode = knode[idz][idy][idx]; 
     for (i=0; i<WSIZE; i++) 
     for (j=0; j<WSIZE; j++) 
      for (k=0; k<WSIZE; k++) 
      if (smem[threadIdx.z + i][threadIdx.y + j][threadIdx.x + k] < tempnode) 
      tempnode = smem[threadIdx.z + i][threadIdx.y + j][threadIdx.x + k]; 
     knode[idz][idy][idx] = tempnode; 
     } 
} 

int main(int argc, char *argv[]) 
{ 
    typedef int cRarray[DATAYSIZE+WSIZE-1][DATAXSIZE+WSIZE-1]; 
    typedef int nRarray[DATAYSIZE][DATAXSIZE]; 
    int i, j, k, u, v, w, temphnode; 
    const dim3 blockSize(BLKXSIZE, BLKYSIZE, BLKZSIZE); 
    const dim3 gridSize(((DATAXSIZE+BLKXSIZE-1)/BLKXSIZE), ((DATAYSIZE+BLKYSIZE-1)/BLKYSIZE), ((DATAZSIZE+BLKZSIZE-1)/BLKZSIZE)); 
// these are just for timing 
    clock_t t0, t1, t2, t3; 
    double t1sum=0.0f; 
    double t2sum=0.0f; 
    double t3sum=0.0f; 
// overall data set sizes 
    const int nx = DATAXSIZE; 
    const int ny = DATAYSIZE; 
    const int nz = DATAZSIZE; 
// window (cubic minimization volume) dimensions 
    const int wx = WSIZE; 
    const int wy = WSIZE; 
    const int wz = WSIZE; 
// pointers for data set storage via malloc 
    nRarray *hnode; // storage for result computed on host 
    nRarray *node, *d_node; // storage for result computed on device 
    cRarray *cell, *d_cell; // storage for input 
// start timing 
    t0 = clock(); 
// allocate storage for data set 
    if ((cell = (cRarray *)malloc(((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))) == 0) {fprintf(stderr,"malloc Fail \n"); return 1;} 
    if ((node = (nRarray *)malloc((nx*ny*nz)*sizeof(int))) == 0) {fprintf(stderr,"malloc Fail \n"); return 1; } 
    if ((hnode = (nRarray *)malloc((nx*ny*nz)*sizeof(int))) == 0) {fprintf(stderr, "malloc Fail \n"); return 1; } 
// synthesize data 
    for(i=0; i<(nz+(wz-1)); i++) 
     for(j=0; j<(ny+(wy-1)); j++) 
     for (k=0; k<(nx+(wx-1)); k++){ 
      cell[i][j][k] = rand(); // unless we use a seed this will produce the same sequence all the time 
      if ((i<nz) && (j<ny) && (k<nx)) { 
      node[i][j][k] = RAND_MAX; 
      hnode[i][j][k] = RAND_MAX; 
      } 
      } 
    t1 = clock(); 
    t1sum = ((double)(t1-t0))/CLOCKS_PER_SEC; 
    printf("Init took %3.2f seconds. Begin compute\n", t1sum); 
// allocate GPU device buffers 
    cudaMalloc((void **) &d_cell, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int))); 
    cudaCheckErrors("Failed to allocate device buffer"); 
    cudaMalloc((void **) &d_node, ((nx*ny*nz)*sizeof(int))); 
    cudaCheckErrors("Failed to allocate device buffer2"); 
// copy data to GPU 
    cudaMemcpy(d_node, node, ((nx*ny*nz)*sizeof(int)), cudaMemcpyHostToDevice); 
    cudaCheckErrors("CUDA memcpy failure"); 
    cudaMemcpy(d_cell, cell, (((nx+(wx-1))*(ny+(wy-1))*(nz+(wz-1)))*sizeof(int)), cudaMemcpyHostToDevice); 
    cudaCheckErrors("CUDA memcpy2 failure"); 

    cmp_win<<<gridSize,blockSize>>>(d_node, d_cell); 
    cudaCheckErrors("Kernel launch failure"); 
// copy output data back to host 

    cudaMemcpy(node, d_node, ((nx*ny*nz)*sizeof(int)), cudaMemcpyDeviceToHost); 
    cudaCheckErrors("CUDA memcpy3 failure"); 
    t2 = clock(); 
    t2sum = ((double)(t2-t1))/CLOCKS_PER_SEC; 
    printf(" Device compute took %3.2f seconds. Beginning host compute.\n", t2sum); 
// now compute the same result on the host 
    for (u=0; u<nz; u++) 
     for (v=0; v<ny; v++) 
     for (w=0; w<nx; w++){ 
      temphnode = hnode[u][v][w]; 
      for (i=0; i<wz; i++) 
      for (j=0; j<wy; j++) 
       for (k=0; k<wx; k++) 
       if (temphnode > cell[i+u][j+v][k+w]) temphnode = cell[i+u][j+v][k+w]; 
      hnode[u][v][w] = temphnode; 
      } 
    t3 = clock(); 
    t3sum = ((double)(t3-t2))/CLOCKS_PER_SEC; 
    printf(" Host compute took %3.2f seconds. Comparing results.\n", t3sum); 
// and compare for accuracy 
    for (i=0; i<nz; i++) 
     for (j=0; j<ny; j++) 
     for (k=0; k<nx; k++) 
      if (hnode[i][j][k] != node[i][j][k]) { 
      printf("Mismatch at x= %d, y= %d, z= %d Host= %d, Device = %d\n", i, j, k, hnode[i][j][k], node[i][j][k]); 
      return 1; 
      } 
    printf("Results match!\n"); 
    free(cell); 
    free(node); 
    cudaFree(d_cell); 
    cudaCheckErrors("cudaFree fail"); 
    cudaFree(d_node); 
    cudaCheckErrors("cudaFree fail"); 
    return 0; 
}