1

我有從doc2vec算法創建的花車矢量,以及他們的標籤。當我用一個簡單的分類器來使用它們時,它可以正常工作並給出預期的準確性。工作代碼如下:Scikit學習管道相同的數據和步驟無法分類

from sklearn.svm import LinearSVC 
import pandas as pd 
import numpy as np 

train_vecs #ndarray (20418,100) 
#train_vecs = [[0.3244, 0.3232, -0.5454, 1.4543, ...],...] 
y_train #labels 
test_vecs #ndarray (6885,100) 
y_test #labels 

classifier = LinearSVC() 
classifier.fit(train_vecs, y_train) 
print('Test Accuracy: %.2f'%classifier.score(test_vecs, y_test)) 

但是現在我想將它移動到一個管道,因爲在未來,我計劃做一個特徵工會各具特色。我所做的是將矢量移動到數據框中,然後使用2個自定義變換器來選擇列,ii)更改數組類型。奇怪的是,完全相同的數據,具有完全相同的形狀,dtype和類型..給出0.0005的準確性。它對我來說根本沒有意義,它應該給出幾乎相等的準確度。在ArrayCaster變壓器之後,輸入的形狀和類型與之前完全相同。整件事情非常令人沮喪。

from sklearn.svm import LinearSVC 
import pandas as pd 
import numpy as np 
from sklearn.pipeline import Pipeline 
from sklearn.base import BaseEstimator, TransformerMixin 

# transformer that picks a column from the dataframe 
class ItemSelector(BaseEstimator, TransformerMixin): 

    def __init__(self, column): 
     self.column = column 

    def fit(self, X, y=None, **fit_params): 
     return self 

    def transform(self, X): 
     print('item selector type',type(X[self.column])) 
     print('item selector shape',len(X[self.column])) 
     print('item selector dtype',X[self.column].dtype) 
     return (X[self.column]) 

# transformer that converts the series into an ndarray 
class ArrayCaster(BaseEstimator, TransformerMixin): 
    def fit(self, x, y=None): 
     return self 

    def transform(self, data): 
     print('array caster type',type(np.array(data.tolist()))) 
     print('array caster shape',np.array(data.tolist()).shape) 
     print('array caster dtype',np.array(data.tolist()).dtype) 
     return np.array(data.tolist()) 


train_vecs #ndarray (20418,100) 
y_train #labels 
test_vecs #ndarray (6885,100) 
y_test #labels 

train['vecs'] = pd.Series(train_vecs.tolist()) 
val['vecs'] = pd.Series(test_vecs.tolist()) 


classifier = Pipeline([ 
      ('selector', ItemSelector(column='vecs')), 
      ('array', ArrayCaster()), 
      ('clf',LinearSVC())]) 

classifier.fit(train, y_train) 
print('Test Accuracy: %.2f'%classifier.score(test, y_test)) 

回答

0

對不起,關於那..我想通了。該錯誤是相當煩人的通知。我所要做的就是將它們作爲列表投入,並將它們放入數據框中,而不是將它們轉換爲系列。 更改此

train['vecs'] = pd.Series(train_vecs.tolist()) 
val['vecs'] = pd.Series(test_vecs.tolist()) 

到:

train['vecs'] = list(train_vecs) 
val['vecs'] = list(test_vecs)