我寫這將打開紫外 - 可見光譜,並試圖用大筆的功能,以適應他們一個Python腳本。但是,我希望在發現最小殘差時將擬合步驟顯示在圖中。計算器實際上有一些例子,這種想法(http://stackoverflow.com/questions/4098131/matplotlib-update-a-plot)接觸,但由於某種原因,這種做法是不工作對我來說非常好。我的意思是「工作不太好」,即劇情窗口不響應腳本中正在發生的更新。 我曾嘗試我的代碼削減到的東西是更容易理解,還編譯,但也更接近我比的例子的代碼,並顯示如下。如何在裝配功能時更新matplotlib圖形?
要重新短語我的問題:是否有通過擬合過程做這種類型的屏幕刷新的,這樣的窗口不會成爲「(無響應)」的更好的辦法?
這裏是我的簡化代碼:
# import modules that I'm using
import matplotlib
matplotlib.use('GTKAgg')
import Tkinter
from Tkinter import *
import numpy as np
import scipy as sc
import matplotlib.pyplot as pltlib
# lmfit is imported becuase parameters are allowed to depend on each other along with bounds, etc.
from lmfit import minimize, Parameters, Minimizer
#If button is pressed on the window, open a file and get the data
def open_File():
# file is opened here and some data is taken
# I've just set some arrays here so it will compile alone
x=[]
y=[]
for num in range(0,1000):x.append(num*.001+1)
# just some random function is given here, the real data is a UV-Vis spectrum
for num2 in range(0,1000):y.append(sc.math.sin(num2*.06)+sc.math.e**(num2*.001))
X = np.array(x)
Y = np.array(y)
# plot the initial data in one figure
pltlib.ion()
pltlib.interactive(True)
pltlib.figure(1)
pltlib.plot(X,Y, "r-")
pltlib.show()
#deconvolute this initial data into deveral lorentzian profiles
deconvolute(X,Y)
#lorentz line for constructing the more complex function
def lorentz(x, amp, center, width):
return amp*1/sc.math.pi*(width/((x-center)**2+width**2))
def deconvolute(X,Y):
#make 2nd figure for the refreshing screen
deconvFig = pltlib.figure(2)
ax = deconvFig.add_subplot(111)
line1,line2=ax.plot(X,Y,'r-',X,Y,'r-')
# setup parameters for several (here is 30, I potentially hae many more in the real program)
params = Parameters()
for p in range(0,30):
params.add('amp' + str(p), value=1)
params.add('center' + str(p), value=1)
params.add('width' + str(p), value=1)
#get residual function for minimizing
def residual(params, X, data=None):
model = 0
# get values for each lorentz and sum them up
for p in range(0,30):
amp = params['amp' + str(p)].value
center = params['center' + str(p)].value
width = params['width' + str(p)].value
tmpLorentz = lorentz(X, amp, center, width)
model = model + tmpLorentz
# This is where the main problem is.
# This 2nd figure stops responding after a very small (1?) number of iterations
########################################
# I want redraw the figure at every step through the fitting process
line2.set_ydata(model)
deconvFig.canvas.draw()
print 'screen should be refreshed'
########################################
return (data - model)
#fit the function to the data
result = minimize(residual, params, args=(X, Y))
print 'done fitting the program'
#create a window with a button
MainWindow = Tk()
Button(text='Open a File', command=open_File).pack(side=BOTTOM)
MainWindow.mainloop()