我在屏蔽面板時遇到了一些麻煩,就像我將DataFrame一樣。我想要做的事情很簡單,但我還沒有找到一種方式來查看文檔和在線論壇。下面我有一個簡單的例子:熊貓面板中的布爾掩模
import pandas
import numpy as np
import datetime
start_date = datetime.datetime(2009,3,1,6,29,59)
r = pandas.date_range(start_date, periods=12)
cols_1 = ['AAPL', 'AAPL', 'GOOG', 'GOOG', 'GS', 'GS']
cols_2 = ['close', 'rate', 'close', 'rate', 'close', 'rate']
dat = np.random.randn(12, 6)
dftst = pandas.DataFrame(dat, columns=pandas.MultiIndex.from_arrays([cols_1, cols_2], names=['ticker','field']), index=r)
pn = dftst.T.to_panel().transpose(2,0,1)
print pn
Out[14]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 12 (major_axis) x 3 (minor_axis)
Items axis: close to rate
Major_axis axis: 2009-03-01 06:29:59 to 2009-03-12 06:29:59
Minor_axis axis: AAPL to GS
我現在有一個Panel對象,如果我分得一杯羹沿物品軸,我得到一個數據幀
close_p = pn['close']
print close_p
Out[16]:
ticker AAPL GOOG GS
2009-03-01 06:29:59 -0.082203 -0.286354 1.227193
2009-03-02 06:29:59 0.340005 -0.688933 -1.505137
2009-03-03 06:29:59 -0.525567 0.321858 -0.035047
2009-03-04 06:29:59 -0.123549 -0.841781 -0.616523
2009-03-05 06:29:59 -0.407504 0.188372 1.311262
2009-03-06 06:29:59 0.272883 0.817179 0.584664
2009-03-07 06:29:59 -1.767227 1.168876 0.443096
2009-03-08 06:29:59 -0.685501 -0.534373 -0.063906
2009-03-09 06:29:59 0.851820 0.068740 0.566537
2009-03-10 06:29:59 0.390678 -0.012422 -0.152375
2009-03-11 06:29:59 -0.985585 -0.917705 -0.585091
2009-03-12 06:29:59 0.067498 -0.764343 0.497270
我可以用兩種方法篩選此數據:
1)創建的掩模和掩模數據,如下所示:
msk = close_p > 0
close_p = close_p.mask(msk)
2)I可以僅通過布爾運算切片在msk以上的發起人
close_p = close_p[close_p > 0]
Out[28]:
ticker AAPL GOOG GS
2009-03-01 06:29:59 NaN NaN 1.227193
2009-03-02 06:29:59 0.340005 NaN NaN
2009-03-03 06:29:59 NaN 0.321858 NaN
2009-03-04 06:29:59 NaN NaN NaN
2009-03-05 06:29:59 NaN 0.188372 1.311262
2009-03-06 06:29:59 0.272883 0.817179 0.584664
2009-03-07 06:29:59 NaN 1.168876 0.443096
2009-03-08 06:29:59 NaN NaN NaN
2009-03-09 06:29:59 0.851820 0.068740 0.566537
2009-03-10 06:29:59 0.390678 NaN NaN
2009-03-11 06:29:59 NaN NaN NaN
2009-03-12 06:29:59 0.067498 NaN 0.497270
我無法弄清楚如何做的是過濾我所有的數據基於一個沒有for循環的掩碼。我可以做到以下幾點:
msk = (pn['rate'] > 0) & (pn['close'] > 0)
def mask_panel(pan, msk):
for item in pan.items:
pan[item] = pan[item].mask(msk)
return pan
print pn['close']
Out[32]:
ticker AAPL GOOG GS
2009-03-01 06:29:59 -0.082203 -0.286354 1.227193
2009-03-02 06:29:59 0.340005 -0.688933 -1.505137
2009-03-03 06:29:59 -0.525567 0.321858 -0.035047
2009-03-04 06:29:59 -0.123549 -0.841781 -0.616523
2009-03-05 06:29:59 -0.407504 0.188372 1.311262
2009-03-06 06:29:59 0.272883 0.817179 0.584664
2009-03-07 06:29:59 -1.767227 1.168876 0.443096
2009-03-08 06:29:59 -0.685501 -0.534373 -0.063906
2009-03-09 06:29:59 0.851820 0.068740 0.566537
2009-03-10 06:29:59 0.390678 -0.012422 -0.152375
2009-03-11 06:29:59 -0.985585 -0.917705 -0.585091
2009-03-12 06:29:59 0.067498 -0.764343 0.497270
mask_panel(pn, msk)
print pn['close']
Out[34]:
ticker AAPL GOOG GS
2009-03-01 06:29:59 -0.082203 -0.286354 NaN
2009-03-02 06:29:59 NaN -0.688933 -1.505137
2009-03-03 06:29:59 -0.525567 NaN -0.035047
2009-03-04 06:29:59 -0.123549 -0.841781 -0.616523
2009-03-05 06:29:59 -0.407504 NaN NaN
2009-03-06 06:29:59 NaN NaN NaN
2009-03-07 06:29:59 -1.767227 NaN NaN
2009-03-08 06:29:59 -0.685501 -0.534373 -0.063906
2009-03-09 06:29:59 NaN NaN NaN
2009-03-10 06:29:59 NaN -0.012422 -0.152375
2009-03-11 06:29:59 -0.985585 -0.917705 -0.585091
2009-03-12 06:29:59 NaN -0.764343 NaN
所以上面的循環有訣竅。我知道使用ndarray有更快的矢量化方式,但我還沒有把它們放在一起。它似乎也應該是內置在熊貓庫中的功能。如果有辦法做到這一點,我錯過了,任何建議將不勝感激。
這感覺就像是你應該能夠使用布爾面板'pn.gt(0)'... –
謝謝安迪,除非我錯了我認爲這會做一些不同的事情。這將在我的面板中的每個DataFrame的值都小於0的範圍內進行調整。我想要執行的操作是在面板中的每個DataFrame中進行調整,其中'close'小於0.再次,close是我面板中的一個特定DataFrame 。如果我想出更好的東西,我會繼續擺弄和張貼。 – granders19
只會影響關閉數據框(面板的一部分)嗎?你想在面板中改變它,並保持另一個不變嗎? –