最後這裏是代碼:
class Peak
{
public:
CvPoint pt;
double maxval;
};
Peak old_opencv_FFT(IplImage* src,IplImage* temp)
{
CvSize imgSize = cvSize(src->width, src->height);
// Allocate floating point frames used for DFT (real, imaginary, and complex)
IplImage* realInput = cvCreateImage(imgSize, IPL_DEPTH_64F, 1);
IplImage* imaginaryInput = cvCreateImage(imgSize, IPL_DEPTH_64F, 1);
IplImage* complexInput = cvCreateImage(imgSize, IPL_DEPTH_64F, 2);
int nDFTHeight= cvGetOptimalDFTSize(imgSize.height);
int nDFTWidth= cvGetOptimalDFTSize(imgSize.width);
CvMat* src_DFT = cvCreateMat(nDFTHeight, nDFTWidth, CV_64FC2);
CvMat* temp_DFT = cvCreateMat(nDFTHeight, nDFTWidth, CV_64FC2);
CvSize dftSize = cvSize(nDFTWidth, nDFTHeight);
IplImage* imageRe = cvCreateImage(dftSize, IPL_DEPTH_64F, 1);
IplImage* imageIm = cvCreateImage(dftSize, IPL_DEPTH_64F, 1);
IplImage* imageImMag = cvCreateImage(dftSize, IPL_DEPTH_64F, 1);
IplImage* imageMag = cvCreateImage(dftSize, IPL_DEPTH_64F, 1);
CvMat tmp;
// Processing of src
cvScale(src,realInput,1.0,0);
cvZero(imaginaryInput);
cvMerge(realInput,imaginaryInput,NULL,NULL,complexInput);
cvGetSubRect(src_DFT,&tmp,cvRect(0,0,src->width,src->height));
cvCopy(complexInput,&tmp,NULL);
if (src_DFT->cols>src->width)
{
cvGetSubRect(src_DFT,&tmp,cvRect(src->width,0,src_DFT->cols-src->width,src->height));
cvZero(&tmp);
}
cvDFT(src_DFT,src_DFT,CV_DXT_FORWARD,complexInput->height);
cvSplit(src_DFT,imageRe,imageIm,0,0);
// Processing of temp
cvScale(temp,realInput,1.0,0);
cvMerge(realInput,imaginaryInput,NULL,NULL,complexInput);
cvGetSubRect(temp_DFT,&tmp,cvRect(0,0,temp->width,temp->height));
cvCopy(complexInput,&tmp,NULL);
if (temp_DFT->cols>temp->width)
{
cvGetSubRect(temp_DFT,&tmp,cvRect(temp->width,0,temp_DFT->cols-temp->width,temp->height));
cvZero(&tmp);
}
cvDFT(temp_DFT,temp_DFT,CV_DXT_FORWARD,complexInput->height);
// Multiply spectrums of the scene and the model (use CV_DXT_MUL_CONJ to get correlation instead of convolution)
cvMulSpectrums(src_DFT,temp_DFT,src_DFT,CV_DXT_MUL_CONJ);
// Split Fourier in real and imaginary parts
cvSplit(src_DFT,imageRe,imageIm,0,0);
// Compute the magnitude of the spectrum components: Mag = sqrt(Re^2 + Im^2)
cvPow(imageRe, imageMag, 2.0);
cvPow(imageIm, imageImMag, 2.0);
cvAdd(imageMag, imageImMag, imageMag, NULL);
cvPow(imageMag, imageMag, 0.5);
// Normalize correlation (Divide real and imaginary components by magnitude)
cvDiv(imageRe,imageMag,imageRe,1.0);
cvDiv(imageIm,imageMag,imageIm,1.0);
cvMerge(imageRe,imageIm,NULL,NULL,src_DFT);
// inverse dft
cvDFT(src_DFT, src_DFT, CV_DXT_INVERSE_SCALE, complexInput->height);
cvSplit(src_DFT, imageRe, imageIm, 0, 0);
double minval = 0.0;
double maxval = 0.0;
CvPoint minloc;
CvPoint maxloc;
cvMinMaxLoc(imageRe,&minval,&maxval,&minloc,&maxloc,NULL);
int x=maxloc.x; // log range
//if (x>(imageRe->width/2))
// x = x-imageRe->width; // positive or negative values
int y=maxloc.y; // angle
//if (y>(imageRe->height/2))
// y = y-imageRe->height; // positive or negative values
Peak pk;
pk.maxval= maxval;
pk.pt=cvPoint(x,y);
return pk;
}
void phase_correlation2D(IplImage* src, IplImage *tpl, IplImage *poc)
{
int i, j, k;
double tmp;
/* get image properties */
int width = src->width;
int height = src->height;
int step = src->widthStep;
int fft_size = width * height;
/* setup pointers to images */
uchar *src_data = (uchar*) src->imageData;
uchar *tpl_data = (uchar*) tpl->imageData;
double *poc_data = (double*)poc->imageData;
/* allocate FFTW input and output arrays */
fftw_complex *img1 = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * width * height);
fftw_complex *img2 = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * width * height);
fftw_complex *res = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * width * height);
/* setup FFTW plans */
fftw_plan fft_img1 = fftw_plan_dft_2d(height ,width, img1, img1, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_plan fft_img2 = fftw_plan_dft_2d(height ,width, img2, img2, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_plan ifft_res = fftw_plan_dft_2d(height ,width, res, res, FFTW_BACKWARD, FFTW_ESTIMATE);
/* load images' data to FFTW input */
for(i = 0, k = 0 ; i < height ; i++) {
for(j = 0 ; j < width ; j++, k++) {
img1[k][0] = (double)src_data[i * step + j];
img1[k][1] = 0.0;
img2[k][0] = (double)tpl_data[i * step + j];
img2[k][1] = 0.0;
}
}
///* Hamming window */
//double omega = 2.0*M_PI/(fft_size-1);
//double A= 0.54;
//double B= 0.46;
//for(i=0,k=0;i<height;i++)
//{
// for(j=0;j<width;j++,k++)
// {
// img1[k][0]= (img1[k][0])*(A-B*cos(omega*k));
// img2[k][0]= (img2[k][0])*(A-B*cos(omega*k));
// }
//}
/* obtain the FFT of img1 */
fftw_execute(fft_img1);
/* obtain the FFT of img2 */
fftw_execute(fft_img2);
/* obtain the cross power spectrum */
for(i = 0; i < fft_size ; i++) {
res[i][0] = (img2[i][0] * img1[i][0]) - (img2[i][1] * (-img1[i][1]));
res[i][1] = (img2[i][0] * (-img1[i][1])) + (img2[i][1] * img1[i][0]);
tmp = sqrt(pow(res[i][0], 2.0) + pow(res[i][1], 2.0));
res[i][0] /= tmp;
res[i][1] /= tmp;
}
/* obtain the phase correlation array */
fftw_execute(ifft_res);
//normalize and copy to result image
for(i = 0 ; i < fft_size ; i++) {
poc_data[i] = res[i][0]/(double)fft_size;
}
/* deallocate FFTW arrays and plans */
fftw_destroy_plan(fft_img1);
fftw_destroy_plan(fft_img2);
fftw_destroy_plan(ifft_res);
fftw_free(img1);
fftw_free(img2);
fftw_free(res);
}
Peak FFTW_test(IplImage* src,IplImage* temp)
{
clock_t start=clock();
int t_w=temp->width;
int t_h=temp->height;
/* create a new image, to store phase correlation result */
IplImage* poc = cvCreateImage(cvSize(temp->width,temp->height), IPL_DEPTH_64F, 1);
/* get phase correlation of input images */
phase_correlation2D(src, temp, poc);
/* find the maximum value and its location */
CvPoint minloc, maxloc;
double minval, maxval;
cvMinMaxLoc(poc, &minval, &maxval, &minloc, &maxloc, 0);
/* IplImage* poc_8= cvCreateImage(cvSize(temp->width, temp->height), 8, 1);
cvConvertScale(poc,poc_8,(double)255/(maxval-minval),(double)(-minval)*255/(maxval-minval));
cvSaveImage("poc.png",poc_8); */
cvReleaseImage(&poc);
clock_t end=clock();
int time= end-start;
//fprintf(stdout, "Time= %d using clock() \n" ,time/*dt*/);
//fprintf(stdout, "Maxval at (%d, %d) = %2.4f\n", maxloc.x, maxloc.y, maxval);
CvPoint pt;
pt.x= maxloc.x;
pt.y= maxloc.y;
//4 variants?
//if(maxloc.x>=0&&maxloc.x<=t_w/2&&maxloc.y>=0&&maxloc.y<=t_h/2)
//{
// pt.x= src->width-maxloc.x;
// pt.y= -maxloc.y;
//}
//if(maxloc.x>=t_w/2&&maxloc.x<=t_w&&maxloc.y>=0&&maxloc.y<=t_h/2)
//{
// pt.x= src->width-maxloc.x;
// pt.y= src->height-maxloc.y;
//}
//if(maxloc.x>=0&&maxloc.x<=t_w/2&&maxloc.y>=t_h/2&&maxloc.y<=t_h)
//{
// /*pt.x= -maxloc.x;
// pt.y= -maxloc.y;*/
// pt.x= src->width-maxloc.x;
// pt.y= src->height-maxloc.y;
//}
//if(maxloc.x>=t_w/2&&maxloc.x<=t_w&&maxloc.y>=t_h/2&&maxloc.y<=t_h)
//{
// pt.x= -maxloc.x;
// pt.y= src->height-maxloc.y;
//}
Peak pk;
pk.maxval= maxval;
pk.pt=pt;
return pk;
}
請注意,您可以只用3次而不是4次進行復數乘法運算。儘管如此,我認爲它不會造成很大的速度差異。 http://mathworld.wolfram.com/ComplexMultiplication.html – CookieOfFortune 2012-10-08 16:17:17