我有一個熊貓數據框列中的JSON對象,我想拆分並放入其他列。在數據框中,JSON對象看起來像一個包含字典數組的字符串。該數組可以是可變長度的,包括零,或者該列甚至可以爲空。我寫了一些代碼,如下所示,這是我想要的。列名由兩個組件構成,第一個是字典中的鍵,第二個是字典中鍵值的子字符串。熊貓DataFrame內的JSON對象
此代碼工作正常,但在大數據框上運行時速度非常慢。任何人都可以提供更快(也可能更簡單)的方式來做到這一點?此外,如果您發現某些不合理/高效/ pythonic的東西,請隨時挑選我已完成的工作。我仍然是一個相對的初學者。感謝堆。
# Import libraries
import pandas as pd
from IPython.display import display # Used to display df's nicely in jupyter notebook.
import json
# Set some display options
pd.set_option('max_colwidth',150)
# Create the example dataframe
print("Original df:")
df = pd.DataFrame.from_dict({'ColA': {0: 123, 1: 234, 2: 345, 3: 456, 4: 567},\
'ColB': {0: '[{"key":"keyValue=1","valA":"8","valB":"18"},{"key":"keyValue=2","valA":"9","valB":"19"}]',\
1: '[{"key":"keyValue=2","valA":"28","valB":"38"},{"key":"keyValue=3","valA":"29","valB":"39"}]',\
2: '[{"key":"keyValue=4","valA":"48","valC":"58"}]',\
3: '[]',\
4: None}})
display(df)
# Create a temporary dataframe to append results to, record by record
dfTemp = pd.DataFrame()
# Step through all rows in the dataframe
for i in range(df.shape[0]):
# Check whether record is null, or doesn't contain any real data
if pd.notnull(df.iloc[i,df.columns.get_loc("ColB")]) and len(df.iloc[i,df.columns.get_loc("ColB")]) > 2:
# Convert the json structure into a dataframe, one cell at a time in the relevant column
x = pd.read_json(df.iloc[i,df.columns.get_loc("ColB")])
# The last bit of this string (after the last =) will be used as a key for the column labels
x['key'] = x['key'].apply(lambda x: x.split("=")[-1])
# Set this new key to be the index
y = x.set_index('key')
# Stack the rows up via a multi-level column index
y = y.stack().to_frame().T
# Flatten out the multi-level column index
y.columns = ['{1}_{0}'.format(*c) for c in y.columns]
# Give the single record the same index number as the parent dataframe (for the merge to work)
y.index = [df.index[i]]
# Append this dataframe on sequentially for each row as we go through the loop
dfTemp = dfTemp.append(y)
# Merge the new dataframe back onto the original one as extra columns, with index mataching original dataframe
df = pd.merge(df,dfTemp, how = 'left', left_index = True, right_index = True)
print("Processed df:")
display(df)
只是一件小事。您可以用'for i,col_b in enumerate(df.iloc [:,df.columns.get_loc(「ColB」)]):'替換您的循環,並相應地更改對該條目的引用以提高可讀性。 – Nyps
謝謝!這當然會使它更加簡潔和可讀。 – Michael