0
我想導出tensorflow模型像出口tensorflow模型
feature_spec = { 'words': tf.FixedLenSequenceFeature([], tf.int64, allow_missing=True) }
def serving_input_receiver_fn():
"""Build the serving inputs."""
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[1],
name='input_example_tensor')
features = tf.parse_example(serialized_tf_example, feature_spec)
receiver_tensors = {'words': serialized_tf_example}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
export_dir = classifier.export_savedmodel(export_dir_base=args.job_dir,
serving_input_receiver_fn=serving_input_receiver_fn)
,但我收到此錯誤
Cannot infer num from shape (1, ?, 128, 128)
時「無法推斷從形狀NUM」
我不知道?
從哪裏來,我猜是從tf.parse_example
。我在這裏做錯了什麼想法?