1
我用Visual Studio 2012和Opencv 2.4.6在C++編程。 我有一套訓練圖像,我已經計算了特徵向量。這些特徵向量應該成爲我的神經網絡的輸入,用CvANN_MLP類來實現。 每個特徵向量由60個屬性,59是神經網絡的「輸入」,最後是「輸出」,即只能是1或0。 我已經意識到這個神經網絡:神經網絡mlp麻煩
CvANN_MLP machineBrain;
double td[NUMERO_ESEMPI_TOTALE][60];
CvMat* trainData = cvCreateMat(NUMERO_ESEMPI_TOTALE, 59, CV_32FC1);
CvMat* trainClasses = cvCreateMat(NUMERO_ESEMPI_TOTALE, 1, CV_32FC1);
CvMat* sampleWts = cvCreateMat(NUMERO_ESEMPI_TOTALE, 1, CV_32FC1);
//The matrix representation of our ANN. We'll have four layers.
CvMat* neuralLayers = cvCreateMat(4, 1, CV_32SC1);
CvMat trainData1, trainClasses1, neuralLayers1, sampleWts1;
cvGetRows(trainData, &trainData1, 0, NUMERO_ESEMPI_TOTALE);
cvGetRows(trainClasses, &trainClasses1, 0, NUMERO_ESEMPI_TOTALE);
cvGetRows(trainClasses, &trainClasses1, 0, NUMERO_ESEMPI_TOTALE);
cvGetRows(sampleWts, &sampleWts1, 0, NUMERO_ESEMPI_TOTALE);
cvGetRows(neuralLayers, &neuralLayers1, 0, 4);
cvSet1D(&neuralLayers1, 0, cvScalar(59));
cvSet1D(&neuralLayers1, 1, cvScalar(3));
cvSet1D(&neuralLayers1, 2, cvScalar(3));
cvSet1D(&neuralLayers1, 3, cvScalar(1));
for(int i=0;i<NUMERO_ESEMPI_TOTALE;i++){
for(int j=0;j<59;j++){
td[i][j] = featureVect[i][j];
}
if(i<45){
td[i][59] = 0; //è una bocca!
}else{
td[i][59] = 1; //non è una bocca!
}
}
//Mettiamo insieme i training data
for (int i=0; i<NUMERO_ESEMPI_TOTALE; i++){
//I 59 input
for(int j=0;j<59;j++){
cvSetReal2D(&trainData1, i, 0, td[i][j]);
}
//Output
cvSet1D(&trainClasses1, i, cvScalar(td[i][59]));
//I pesi (vengono tutti settati a 1)
cvSet1D(&sampleWts1, i, cvScalar(1));
}
machineBrain.create(neuralLayers);
cout<<"Rete creata"<<endl;
//Train it with our data.
machineBrain.train(trainData,trainClasses,sampleWts,0,CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,100000,/*1.0*/0.01/*riprovare 0.01*/),CvANN_MLP_TrainParams::BACKPROP,0.001,0.05));
cout<<"Rete addestrata"<<endl;
Mat pred(num_test_sample, 1, CV_32FC1);
Mat pred1(num_test_sample, 1, CV_32FC1);
for(int i=0;i<NUMERO_ESEMPI_TEST; i++){
float _sample[59];
CvMat sample = cvMat(1, 59, CV_32FC1, _sample);
float _predout[1];
CvMat predout = cvMat(1, 1, CV_32FC1, _predout);
for(int j=0;j<59;j++){
sample.data.fl[j] = featureVectTest[i][j];
}
machineBrain.predict(&sample, &predout);
cout<<endl<<predout.data.fl[i]<<endl;//risultato predizione!
pred.at<float>(i,0)=predout.data.fl[i];
pred1.at<float>(i,0)=predout.data.fl[i];
file<<"Value Image "<<i<<": "<<predout.data.fl[i]<<"\n";
}
返回的值是這種類型的:
Value Image 0: 0.475639
Value Image 1: 0
Value Image 2: 4.2039e-044
Value Image 3: 1.4013e-045
Value Image 4: -7.88636e-016
Value Image 5: 1.31722e-043
Value Image 6: 4.2039e-044
Value Image 7: 1.4013e-045
Value Image 8: 0.0154511
Value Image 9: 0.00100189
Value Image 10: 0.00161414
Value Image 11: 0.0449422
Value Image 12: 7.5433
Value Image 13: 65.8052
Value Image 14: 24.301
Value Image 15: 19.7311
Value Image 16: 0.985553
Value Image 17: 0.965309
Value Image 18: 0.971295
所以我還沒有結果0或1。對不對?如果不是,我的代碼中有什麼錯誤?