我認爲你可以使用panel - ,然後Multiindex DataFrame
添加to_frame
:
np.random.seed(10)
arr = np.random.randint(10, size=(5,3,2))
print (arr)
[[[9 4]
[0 1]
[9 0]]
[[1 8]
[9 0]
[8 6]]
[[4 3]
[0 4]
[6 8]]
[[1 8]
[4 1]
[3 6]]
[[5 3]
[9 6]
[9 1]]]
df = pd.Panel(arr).to_frame()
print (df)
0 1 2 3 4
major minor
0 0 9 1 4 1 5
1 4 8 3 8 3
1 0 0 9 0 4 9
1 1 0 4 1 6
2 0 9 8 6 3 9
1 0 6 8 6 1
而且transpose
可能是有用的:
df = pd.Panel(arr).transpose(1,2,0).to_frame()
print (df)
0 1 2
major minor
0 0 9 0 9
1 1 9 8
2 4 0 6
3 1 4 3
4 5 9 9
1 0 4 1 0
1 8 0 6
2 3 4 8
3 8 1 6
4 3 6 1
與concat
另一種可能的解決方案:
arr = arr.transpose(1,2,0)
df = pd.concat([pd.DataFrame(x) for x in arr], keys=np.arange(arr.shape[2]))
print (df)
0 1 2 3 4
0 0 9 1 4 1 5
1 4 8 3 8 3
1 0 0 9 0 4 9
1 1 0 4 1 6
2 0 9 8 6 3 9
1 0 6 8 6 1
np.random.seed(10)
arr = np.random.randint(10, size=(500,120,100))
df = pd.Panel(arr).transpose(2,0,1).to_frame()
print (df.shape)
(60000, 100)
print (df.index.max())
(499, 119)
謝謝!這越來越接近。但數據的形狀是不正確的,我正在尋找500行(作爲「主要」)和0和1作爲你的初始例子中的次要。但是我得到500列。我嘗試了不同的轉置排列,但仍不完全正確。 – BioProg
你是否需要'小'和'100'或'120'列中的'500'行,主要是'120'還是'100'? – jezrael
也許需要'.transpose(1,0,2)'如果是'120'列。 – jezrael