2
我試圖在tensorflow與圖像玩,我試圖運行此代碼,但它給這個錯誤:ValueError異常:無效的文字在tensorflow INT()基數爲10
/anaconda/bin/python "/Users/tony/Downloads/Tensorflow learning/9th pro.py"
/anaconda/lib/python3.5/site-packages/matplotlib/tight_layout.py:222: UserWarning: tight_layout : falling back to Agg renderer
warnings.warn("tight_layout : falling back to Agg renderer")
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Traceback (most recent call last):
File "/Users/tony/Downloads/Tensorflow learning/9th pro.py", line 11, in <module>
sess_1=sess.run(slice_thing,feed_dict={place_holder1:image_a})
File "/anaconda/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/anaconda/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 938, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "/anaconda/lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: invalid literal for int() with base 10: 'dd.jpg'
我的代碼是:
import skimage.io as i
import matplotlib.pyplot as plt
import tensorflow as tf
image_a="dd.jpg"
read_image=i.imread(image_a)
show_image=i.imshow(image_a)
place_holder1=tf.placeholder("uint8",[None,None,3])
slice_thing=tf.slice(place_holder1,[1,1,0],[1,1,0])
with tf.Session() as sess:
sess_1=sess.run(slice_thing,feed_dict={place_holder1:image_a})
print(sess_1.shape)
print(i.imshow(sess_1))
plt.show()
如果我試圖用浮動更換INT:
place_holder1=tf.placeholder("float32",[None,None,3])
然後我收到此錯誤:
ValueError: could not convert string to float: 'dd.jpg'
我的第二個問題是什麼是3在這一行
place_holder1=tf.placeholder("unit8",[None,None,3])
如果我沒有學到那麼無,無=行,列
placeholder("unit8",[row,col,3]
我瞭解它的約束矩陣大小
但這裏3是什麼?
你能解釋一下多一點我的意思是[無,無,3意味着它的3×3的矩陣?因爲一個球場是None,第二個是None,那麼第三個會是3? – stephen
@stephen沒有,沒有,3'不是一個矩陣,這是一個等級3的張量。你可以把它想象成3個大小爲'none,none'的矩陣。 「無」意味着任何維度,因此它可以是「5,7,3」或「1,4,3」。我建議你閱讀介紹性教程,因爲這些是基本的定義,沒有這些基本的定義就不可能在TF中做任何事情 –
你說過:「你可以把它想象成3個大小都不是的矩陣,但是如果我寫[None,None,3 ],則第一個無是張量的深度,第2個無是該張量中的矩陣行,第3個是這些矩陣的列。所以它將是「無約束矩陣深度無約束的行,每個矩陣只有3列」。 ? – stephen