2017-03-01 111 views
1

我試圖將以下字典轉換爲適合查看眼睛的DataFrame格式。該數據字典是在訪問api和解析XML之後創建的,所以我肯定願意以不同的方式將數據放在一起,以簡化過程。將字典轉換爲包含分層索引和列的Pandas DataFrame

我的格式是這樣的(與其它兩個市場未圖示的水平放置在彼此的旁邊):

    Market1 
          B      S 
        Depth1 Depth2 Depth3 Depth1 Depth2 Depth3 
actionIndicator   B  B  B  S  S  S 
limit     589 588  586  591  592  593 
quantity   185.121 8.121 32.216 34.805 16.037 36.099 

我想是(未示出應該被垂直堆疊的兩個市場和音符重新格式深度-ordering):

        B      S 
          Depth3 Depth2 Depth1 Depth1 Depth2 Depth3 
Market1 actionIndicator  B  B  B  S  S  S 
      limit    587 588  589  591  592  593 
      quantity   185.121 8.121 32.216 34.805 16.037 36.099 

代碼:

from pandas import DataFrame 


data = { 
'Market1': {'B': {'Depth1': {'actionIndicator': 'B', 
    'limit': '558', 
    'quantity': '8.286'}, 
    'Depth2': {'actionIndicator': 'B', 'limit': '557', 'quantity': '8.355'}, 
    'Depth3': {'actionIndicator': 'B', 'limit': '555', 'quantity': '18.474'}}, 
    'S': {'Depth1': {'actionIndicator': 'S', 
    'limit': '560', 
    'quantity': '0.626'}, 
    'Depth2': {'actionIndicator': 'S', 'limit': '561', 'quantity': '17.101'}, 
    'Depth3': {'actionIndicator': 'S', 'limit': '562', 'quantity': '17.576'}}}, 
'Market2': {'B': {'Depth1': {'actionIndicator': 'B', 
    'limit': '478', 
    'quantity': '8.182'}, 
    'Depth2': {'actionIndicator': 'B', 'limit': '477', 'quantity': '8.329'}, 
    'Depth3': {'actionIndicator': 'B', 'limit': '475', 'quantity': '30.156'}}, 
    'S': {'Depth1': {'actionIndicator': 'S', 
    'limit': '479', 
    'quantity': '37.483'}, 
    'Depth2': {'actionIndicator': 'S', 'limit': '480', 'quantity': '84.416'}, 
    'Depth3': {'actionIndicator': 'S', 'limit': '481', 'quantity': '37.659'}}}, 
'Market3': {'B': {'Depth1': {'actionIndicator': 'B', 
    'limit': '587', 
    'quantity': '8.18'}, 
    'Depth2': {'actionIndicator': 'B', 'limit': '586', 'quantity': '8.382'}, 
    'Depth3': {'actionIndicator': 'B', 'limit': '583', 'quantity': '39.548'}}, 
    'S': {'Depth1': {'actionIndicator': 'S', 
    'limit': '589', 
    'quantity': '55.181'}, 
    'Depth2': {'actionIndicator': 'S', 'limit': '590', 'quantity': '17.289'}, 
    'Depth3': {'actionIndicator': 'S', 'limit': '591', 'quantity': '17.689'}}}, 
} 

df = DataFrame.from_dict(
     {(k1, k2, k3): data[k1][k2][k3] for k1 in data.keys() for k2 in 
     data[k1].keys() for k3 in data[k1][k2].keys()}, orient="columns") 

print(df) 
+0

你看着pd.melt? – Boud

+1

Hacky but works:'df.unstack()。reorder_levels([0,3,2,1])。unstack(level = [3,2])' –

+0

感謝Jan.任何希望重新排序的部分「深」? –

回答

0
df = df.unstack().reorder_levels([0,3,2,1]).unstack(level=[3,2]) 

dfB = df[["B"]].sort_index(axis=1, ascending=False) 
dfS = df[["S"]] 

df = pd.concat([dfB, dfS], axis=1) 

50%的功勞歸功於Jan評論了unpack()解決方案。

給出:

       B      S 
         Depth3 Depth2 Depth1 Depth1 Depth2 Depth3 
Market1 actionIndicator  B  B  B  S  S  S 
     limit    555 557 558  560  561  562 
     quantity   18.474 8.355 8.286 0.626 17.101 17.576 
Market2 actionIndicator  B  B  B  S  S  S 
     limit    475 477 478  479  480  481 
     quantity   30.156 8.329 8.182 37.483 84.416 37.659 
Market3 actionIndicator  B  B  B  S  S  S 
     limit    583 586 587  589  590  591 
     quantity   39.548 8.382 8.18 55.181 17.289 17.689 
相關問題