0
因爲我手動運行會話,我似乎無法收集特定圖層的可訓練權重。如何獲得在Keras中手動運行會話的可訓練權重?
x = Convolution2D(16, 3, 3, init='he_normal', border_mode='same')(img)
for i in range(0, self.blocks_per_group):
nb_filters = 16 * self.widening_factor
x = residual_block(x, nb_filters=nb_filters, subsample_factor=1)
for i in range(0, self.blocks_per_group):
nb_filters = 32 * self.widening_factor
if i == 0:
subsample_factor = 2
else:
subsample_factor = 1
x = residual_block(x, nb_filters=nb_filters, subsample_factor=subsample_factor)
for i in range(0, self.blocks_per_group):
nb_filters = 64 * self.widening_factor
if i == 0:
subsample_factor = 2
else:
subsample_factor = 1
x = residual_block(x, nb_filters=nb_filters, subsample_factor=subsample_factor)
x = BatchNormalization(axis=3)(x)
x = Activation('relu')(x)
x = AveragePooling2D(pool_size=(8, 8), strides=None, border_mode='valid')(x)
x = tf.reshape(x, [-1, np.prod(x.get_shape()[1:].as_list())])
# Readout layer
preds = Dense(self.nb_classes, activation='softmax')(x)
loss = tf.reduce_mean(categorical_crossentropy(labels, preds))
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
with sess.as_default():
for i in range(10):
batch = self.next_batch(self.batch_num)
_, l = sess.run([optimizer, loss],
feed_dict={img: batch[0], labels: batch[1]})
print(l)
print(type(weights))
我想要得到最後一個卷積圖層的權重。
我試過get_trainable_weights(layer)
和layer.get_weights()
但我沒有設法找到任何地方。
錯誤
AttributeError: 'Tensor' object has no attribute 'trainable_weights'