2
我正在努力使用rjags
來定義條件線性高斯貝葉斯網絡。 使用rjags定義條件線性高斯網絡
對於下面的淨(A CLG BN是通過具有兩個連續的正常和離散父(預測)一個連續的子節點(結果)所定義的),A是離散的,d和E連續:
對於rjags
模型,我supose我要的是節點E
的參數進行數值節點A
上定義需要:僞代碼
model {
A ~ dcat(c(0.0948, 0.9052))
D ~ dnorm(11.87054, 1/1.503111^2)
if A==a then E ~ dnorm(6.558366 + 1.180965*D, 1/2.960002^2)
if A==b then E ~ dnorm(3.370021 + 1.532289*D, 1/6.554402^2)
}
我可以通過使用下面的代碼得到一些工作,但它會很快與更多的預測器和分類級別混淆。
library(rjags)
model <- textConnection("model {
A ~ dcat(c(0.0948, 0.9052))
D ~ dnorm(11.87054, 1/1.503111^2)
int = 6.558366 - (A==2)*(6.558366 - 3.370021)
slope = 1.180965 - (A==2)*(1.180965 - 1.532289)
sig = 2.960002 - (A==2)*(2.960002 - 6.554402)
E ~ dnorm(int + slope*D, 1/sig^2)
}")
jg <- jags.model(model, n.adapt = 1000
我的問題:我該如何定義簡潔這種模式嗎?
數據從
來到library(bnlearn)
net = model2network("[A][D][E|A:D]")
ft = bn.fit(net, clgaussian.test[c("A", "D", "E")])
coef(ft)
structure(list(A = structure(c(0.0948, 0.9052), class = "table", .Dim = 2L, .Dimnames = list(
c("a", "b"))), D = structure(11.8705363469396, .Names = "(Intercept)"),
E = structure(c(6.55836552742708, 1.18096500477159, 3.37002124328838,
1.53228891423418), .Dim = c(2L, 2L), .Dimnames = list(c("(Intercept)",
"D"), c("0", "1")))), .Names = c("A", "D", "E"))
sigma(ft)
structure(list(A = NA, D = 1.50311121682603, E = structure(c(2.96000206596326,
6.55440224877698), .Names = c("0", "1"))), .Names = c("A", "D",
"E"))
非常感謝你,那正是我所期待的。 – user2957945