2017-04-02 145 views
0

這裏我有一個分類任務,我需要使用neuralnet和ROCR包。問題是當我使用預測函數時,我收到了錯誤消息。使用neuralnet和ROCR包繪製神經網絡曲線

這裏是我的代碼:

#load packages 
require(neuralnet) 
library(ROCR) 

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",") 
test<- read.table(file="test.txt",header=TRUE,sep=",") 

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE) 

prob = compute(nn.sag, test[, -ncol(test)]) 
prob.result <- prob$net.result 

nn.pred = prediction(prob.result, test$Type) 
pref <- performance(nn.pred, "tpr", "fpr") 
plot(pref) 

在這裏,我得到了「預測」函數的錯誤消息:看起來像(僅 「$操作是原子向量無效」

數據集這裏的訓練數據集):

Area,Perimeter,Compactness,Length,Width,Asymmetry,Groove,Type 
14.8,14.52,0.8823,5.656,3.288,3.112,5.309,1 
14.79,14.52,0.8819,5.545,3.291,2.704,5.111,1 
14.99,14.56,0.8883,5.57,3.377,2.958,5.175,1 
19.14,16.61,0.8722,6.259,3.737,6.682,6.053,0 
15.69,14.75,0.9058,5.527,3.514,1.599,5.046,1 
14.11,14.26,0.8722,5.52,3.168,2.688,5.219,1 
13.16,13.55,0.9009,5.138,3.201,2.461,4.783,1 
16.16,15.33,0.8644,5.845,3.395,4.266,5.795,0 
15.01,14.76,0.8657,5.789,3.245,1.791,5.001,1 
14.11,14.1,0.8911,5.42,3.302,2.7,5,1 
17.98,15.85,0.8993,5.979,3.687,2.257,5.919,0 
21.18,17.21,0.8989,6.573,4.033,5.78,6.231,0 
14.29,14.09,0.905,5.291,3.337,2.699,4.825,1 
14.59,14.28,0.8993,5.351,3.333,4.185,4.781,1 
11.42,12.86,0.8683,5.008,2.85,2.7,4.607,1 
12.11,13.47,0.8392,5.159,3.032,1.502,4.519,1 
15.6,15.11,0.858,5.832,3.286,2.725,5.752,0 
15.38,14.66,0.899,5.477,3.465,3.6,5.439,0 
18.94,16.49,0.875,6.445,3.639,5.064,6.362,0 
12.36,13.19,0.8923,5.076,3.042,3.22,4.605,1 
14.01,14.29,0.8625,5.609,3.158,2.217,5.132,1 
17.12,15.55,0.8892,5.85,3.566,2.858,5.746,0 
15.78,14.91,0.8923,5.674,3.434,5.593,5.136,1 
16.19,15.16,0.8849,5.833,3.421,0.903,5.307,1 
14.43,14.4,0.8751,5.585,3.272,3.975,5.144,1 
13.8,14.04,0.8794,5.376,3.155,1.56,4.961,1 
14.46,14.35,0.8818,5.388,3.377,2.802,5.044,1 
18.59,16.05,0.9066,6.037,3.86,6.001,5.877,0 
18.75,16.18,0.8999,6.111,3.869,4.188,5.992,0 
15.49,14.94,0.8724,5.757,3.371,3.412,5.228,1 
12.73,13.75,0.8458,5.412,2.882,3.533,5.067,1 
13.5,13.85,0.8852,5.351,3.158,2.249,5.176,1 
14.38,14.21,0.8951,5.386,3.312,2.462,4.956,1 
14.86,14.67,0.8676,5.678,3.258,2.129,5.351,1 
18.45,16.12,0.8921,6.107,3.769,2.235,5.794,0 
17.32,15.91,0.8599,6.064,3.403,3.824,5.922,0 
20.2,16.89,0.8894,6.285,3.864,5.173,6.187,0 
20.03,16.9,0.8811,6.493,3.857,3.063,6.32,0 
18.14,16.12,0.8772,6.059,3.563,3.619,6.011,0 
13.99,13.83,0.9183,5.119,3.383,5.234,4.781,1 
15.57,15.15,0.8527,5.92,3.231,2.64,5.879,0 
16.2,15.27,0.8734,5.826,3.464,2.823,5.527,1 
20.97,17.25,0.8859,6.563,3.991,4.677,6.316,0 
14.16,14.4,0.8584,5.658,3.129,3.072,5.176,1 
13.45,14.02,0.8604,5.516,3.065,3.531,5.097,1 
15.5,14.86,0.882,5.877,3.396,4.711,5.528,1 
16.77,15.62,0.8638,5.927,3.438,4.92,5.795,0 
12.74,13.67,0.8564,5.395,2.956,2.504,4.869,1 
14.88,14.57,0.8811,5.554,3.333,1.018,4.956,1 
14.28,14.17,0.8944,5.397,3.298,6.685,5.001,1 
14.34,14.37,0.8726,5.63,3.19,1.313,5.15,1 
14.03,14.16,0.8796,5.438,3.201,1.717,5.001,1 
19.11,16.26,0.9081,6.154,3.93,2.936,6.079,0 
14.52,14.6,0.8557,5.741,3.113,1.481,5.487,1 
18.43,15.97,0.9077,5.98,3.771,2.984,5.905,0 
18.81,16.29,0.8906,6.272,3.693,3.237,6.053,0 
13.78,14.06,0.8759,5.479,3.156,3.136,4.872,1 
14.69,14.49,0.8799,5.563,3.259,3.586,5.219,1 
18.85,16.17,0.9056,6.152,3.806,2.843,6.2,0 
12.88,13.5,0.8879,5.139,3.119,2.352,4.607,1 
12.78,13.57,0.8716,5.262,3.026,1.176,4.782,1 
14.33,14.28,0.8831,5.504,3.199,3.328,5.224,1 
19.46,16.5,0.8985,6.113,3.892,4.308,6.009,0 
19.38,16.72,0.8716,6.303,3.791,3.678,5.965,0 
15.26,14.85,0.8696,5.714,3.242,4.543,5.314,1 
20.24,16.91,0.8897,6.315,3.962,5.901,6.188,0 
19.94,16.92,0.8752,6.675,3.763,3.252,6.55,0 
20.71,17.23,0.8763,6.579,3.814,4.451,6.451,0 
16.17,15.38,0.8588,5.762,3.387,4.286,5.703,0 
13.02,13.76,0.8641,5.395,3.026,3.373,4.825,1 
16.53,15.34,0.8823,5.875,3.467,5.532,5.88,0 
13.89,14.02,0.888,5.439,3.199,3.986,4.738,1 
18.98,16.57,0.8687,6.449,3.552,2.144,6.453,0 
17.08,15.38,0.9079,5.832,3.683,2.956,5.484,1 
15.03,14.77,0.8658,5.702,3.212,1.933,5.439,1 
16.14,14.99,0.9034,5.658,3.562,1.355,5.175,1 
18.65,16.41,0.8698,6.285,3.594,4.391,6.102,0 
20.1,16.99,0.8746,6.581,3.785,1.955,6.449,0 
17.99,15.86,0.8992,5.89,3.694,2.068,5.837,0 
15.88,14.9,0.8988,5.618,3.507,0.7651,5.091,1 
13.22,13.84,0.868,5.395,3.07,4.157,5.088,1 
18.3,15.89,0.9108,5.979,3.755,2.837,5.962,0 
19.51,16.71,0.878,6.366,3.801,2.962,6.185,0 

回答

0

prediction()功能是在這兩個neuralnet和ROCR包R.可用,因此不加載這兩個程序包磕磕碰碰呃。首先加載神經網絡,訓練你的模型,然後使用detach()分離它,然後加載ROCR軟件包。請嘗試以下代碼:

#load packages 
require(neuralnet) 

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",") 
test<- read.table(file="test.txt",header=TRUE,sep=",") 

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE) 

prob = compute(nn.sag, test[, -ncol(test)]) 
prob.result <- prob$net.result 

detach(package:neuralnet,unload = T) 

library(ROCR) 
nn.pred = prediction(prob.result, test$Type) 
pref <- performance(nn.pred, "tpr", "fpr") 
plot(pref)