2017-11-11 168 views
8

我試圖實現Tensorflow對象檢測API示例。我正在關注sentdex視頻。示例代碼運行良好,它還顯示用於測試結果的圖像,但未顯示檢測到的對象周圍的邊界。只是平面圖像顯示沒有任何錯誤。Tensorflow對象檢測API中沒有檢測到什麼

我使用此代碼:This Github link

這是運行示例代碼後的結果。

enter image description here

沒有任何檢測的另一圖像。

enter image description here

什麼我錯過這裏?代碼包含在上面的鏈接中,並且沒有錯誤日誌。

按照該順序的框,分數,類別,數量的結果。

[[[ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.20880508 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.20934391 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.20880508 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.74907303 0.14624023 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ]]] 
[[ 0.03587547 0.02224986 0.0186467 0.01096812 0.01003207 0.00654409 
    0.00633549 0.00534311 0.0049596 0.00410213 0.00362371 0.00339186 
    0.00308251 0.00303347 0.00293389 0.00277099 0.00269575 0.00266825 
    0.00263925 0.00263331 0.00258657 0.00240822 0.0022581 0.00186967 
    0.00184311 0.00180467 0.00177475 0.00173655 0.00172811 0.00171935 
    0.00171891 0.00170288 0.00163755 0.00162967 0.00160273 0.00156545 
    0.00153615 0.00140941 0.00132407 0.00131524 0.0013105 0.00129431 
    0.0012582 0.0012553 0.00122365 0.00119186 0.00115651 0.00115186 
    0.00112369 0.00107097 0.00105805 0.00104338 0.00102719 0.00102337 
    0.00100349 0.00097762 0.00096851 0.00092741 0.00088506 0.00087696 
    0.0008734 0.00084826 0.00084135 0.00083513 0.00083398 0.00082068 
    0.00080583 0.00078979 0.00078059 0.00077476 0.00075448 0.00074426 
    0.00074421 0.00070195 0.00068741 0.00068138 0.00067262 0.00067125 
    0.00067033 0.00066035 0.00064729 0.00064205 0.00061964 0.00061794 
    0.00060835 0.00060465 0.00059548 0.00059479 0.00059461 0.00059436 
    0.00059426 0.00059411 0.00059406 0.00059392 0.00059365 0.00059351 
    0.00059191 0.00058798 0.00058682 0.00058148]] 
[[ 1. 1. 18. 32. 62. 60. 63. 67. 61. 49. 31. 84. 50. 54. 
    15. 44. 44. 49. 31. 56. 88. 28. 88. 52. 17. 32. 38. 75. 
    3. 33. 48. 59. 35. 57. 47. 51. 19. 27. 72. 4. 84. 6. 
    55. 20. 58. 65. 61. 82. 42. 34. 40. 21. 43. 64. 39. 62. 
    36. 22. 79. 46. 16. 40. 41. 77. 16. 48. 78. 77. 89. 86. 
    27. 8. 87. 5. 25. 70. 80. 76. 75. 67. 65. 37. 2. 9. 
    73. 63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 13. 85. 
    74. 23.]] 
[ 100.] 
[[[ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.00784111 0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.   1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ] 
    [ 0.   0.68494415 1.   1.  ]]] 
[[ 0.01044297 0.0098214 0.00942165 0.00846471 0.00613666 0.00398615 
    0.00357754 0.0030054 0.00255861 0.00236574 0.00232631 0.00220291 
    0.00185227 0.0016354 0.0015979 0.00145072 0.00143661 0.00141369 
    0.00122685 0.00118978 0.00108457 0.00104251 0.00099215 0.00096401 
    0.0008708 0.00084773 0.00080484 0.00078507 0.00078378 0.00076876 
    0.00072774 0.00071732 0.00071348 0.00070812 0.00069253 0.0006762 
    0.00067269 0.00059905 0.00059367 0.000588 0.00056114 0.0005504 
    0.00051472 0.00051057 0.00050973 0.00048486 0.00047297 0.00046204 
    0.00044787 0.00043259 0.00042987 0.00042673 0.00041978 0.00040494 
    0.00040087 0.00039576 0.00039059 0.00037274 0.00036831 0.00036417 
    0.00036119 0.00034645 0.00034479 0.00034078 0.00033771 0.00033605 
    0.0003333 0.0003304 0.0003294 0.00032326 0.00031787 0.00031773 
    0.00031748 0.00031741 0.00031732 0.00031729 0.00031724 0.00031722 
    0.00031717 0.00031708 0.00031702 0.00031579 0.00030416 0.00030222 
    0.00029739 0.00029726 0.00028289 0.0002653 0.00026325 0.00024584 
    0.00024221 0.00024156 0.00023911 0.00023335 0.00021619 0.0002001 
    0.00019127 0.00018342 0.00017273 0.00015509]] 
[[ 38. 1. 1. 16. 25. 38. 64. 24. 49. 56. 20. 3. 28. 2. 
    48. 19. 21. 62. 50. 6. 8. 7. 67. 18. 35. 53. 39. 55. 
    15. 57. 72. 52. 10. 5. 42. 43. 76. 22. 82. 4. 61. 23. 
    17. 16. 87. 62. 51. 60. 36. 58. 59. 33. 31. 54. 70. 11. 
    40. 79. 31. 9. 41. 77. 80. 34. 90. 89. 73. 13. 84. 32. 
    63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 14. 44. 78. 
    85. 46. 47. 19. 65. 74. 37. 27. 63. 88. 28. 81. 86. 75. 
    27. 18.]] 
[ 100.] 

編輯:按參考答案,這是工作,當我們使用faster_rcnn_resnet101_coco_2017_11_08模型。但它更準確,這就是爲什麼要慢。我希望高速應用這個應用程序,因爲我將實時(在網絡攝像頭上)對象檢測中使用它。所以,我需要使用更快的模型(ssd_mobilenet_v1_coco_2017_11_08

+2

你能告訴我們的價值觀(盒,分數,等級,NUM) ;我想了解是否有任何物體被檢測到。 – Zephro

+0

我該怎麼做? @Zephro – Kaushal28

+0

好嗎通過打印框的座標? – Kaushal28

回答

-1

功能visualize_boxes_and_labels_on_image_array具有下面的代碼:

for i in range(min(max_boxes_to_draw, boxes.shape[0])): 
    if scores is None or scores[i] > min_score_thresh: 

如此,得分必須比min_score_thresh(默認值0.5)更大,你可以檢查是否有一些分數比它大。

+0

那麼爲什麼即使檢測正確,分數也不會大於0.5? – Kaushal28

+0

因此,如果模型'ssd_mobilenet_v1_coco_2017_11_08'有問題,那麼是否意味着使用它的訓練也會有問題?我試圖訓練它,但它在第一步被卡住:global_step /秒:0. 它堅持了將近9個小時。 我正在使用CPU進行培訓。 – Mandroid

+0

@ Kaushal28您可以使用型號「faster_rcnn_resnet101_coco_2017_11_08」而不是「ssd_mobilenet_v1_coco_2017_11_08」 –

2

解決方法將#MODEL_NAME ='ssd_mobilenet_v1_coco_2017_11_08'更改爲MODEL_NAME ='faster_rcnn_resnet101_coco_2017_11_08'。

1

您可以使用較舊的'ssd_mobilenet_v1 ...',並用盒子完全運行您的程序(我現在就運行它,它是正確的)。這是舊版本的link。希望他們儘快修正更新的版本!

2

的問題是從模型:'ssd_mobilenet_v1_coco_2017_11_08'

解決方法:更改爲differrent版本'ssd_mobilenet_v1_coco_11_06_2017'(這種模式類型爲最快的國家之一,更改爲其他模型類型將使其更慢,而不是東西你想要的)

只要改變1行代碼:

# What model to download. 
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' 

當我用你的鱈魚e,什麼都沒有顯示,但當我用我以前的實驗模型替換它'ssd_mobilenet_v1_coco_11_06_2017'它工作正常

0

我曾經有同樣的問題。

但一種新的模式最近已被上傳「ssd_mobilenet_v1_coco_2017_11_17」

我嘗試過了,就像魅力:)

相關問題