我使用R鍵做機器學習。根據標準的機器學習方法,我想我的數據隨機分成培訓,驗證和測試數據集。我如何在R中做到這一點?R:如何將數據幀分成訓練,驗證和測試集?
我知道如何分解成2個數據集(例如post)有一些相關的問題,但不清楚如何爲3個分割數據集執行此操作。順便說一句,正確的方法是用3個數據集(包括驗證組來調整你的超參數)。
我使用R鍵做機器學習。根據標準的機器學習方法,我想我的數據隨機分成培訓,驗證和測試數據集。我如何在R中做到這一點?R:如何將數據幀分成訓練,驗證和測試集?
我知道如何分解成2個數據集(例如post)有一些相關的問題,但不清楚如何爲3個分割數據集執行此操作。順便說一句,正確的方法是用3個數據集(包括驗證組來調整你的超參數)。
遵循本post所示的方法,在這裏工作R代碼裏面的數據幀分成了測試,驗證和測試三個新dataframes。三個子集不重疊。
# Create random training, validation, and test sets
# Set some input variables to define the splitting.
# Input 1. The data frame that you want to split into training, validation, and test.
df <- mtcars
# Input 2. Set the fractions of the dataframe you want to split into training,
# validation, and test.
fractionTraining <- 0.60
fractionValidation <- 0.20
fractionTest <- 0.20
# Compute sample sizes.
sampleSizeTraining <- floor(fractionTraining * nrow(df))
sampleSizeValidation <- floor(fractionValidation * nrow(df))
sampleSizeTest <- floor(fractionTest * nrow(df))
# Create the randomly-sampled indices for the dataframe. Use setdiff() to
# avoid overlapping subsets of indices.
indicesTraining <- sort(sample(seq_len(nrow(df)), size=sampleSizeTraining))
indicesNotTraining <- setdiff(seq_len(nrow(df)), indicesTraining)
indicesValidation <- sort(sample(indicesNotTraining, size=sampleSizeValidation))
indicesTest <- setdiff(indicesNotTraining, indicesValidation)
# Finally, output the three dataframes for training, validation and test.
dfTraining <- df[indicesTraining, ]
dfValidation <- df[indicesValidation, ]
dfTest <- df[indicesTest, ]
對於兩個組(使用floor
)的這種鏈接方法沒有自然延伸到三。我會做
spec = c(train = .6, test = .2, validate = .2)
g = sample(cut(
seq(nrow(df)),
nrow(df)*cumsum(c(0,spec)),
labels = names(spec)
))
res = split(df, g)
檢查結果:
sapply(res, nrow)/nrow(df)
# train test validate
# 0.59375 0.18750 0.21875
# or...
addmargins(prop.table(table(g)))
# train test validate Sum
# 0.59375 0.18750 0.21875 1.00000
隨着set.seed(1)
運行之前,結果看起來像
$train
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
$test
mpg cyl disp hp drat wt qsec vs am gear carb
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
$validate
mpg cyl disp hp drat wt qsec vs am gear carb
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Data.frames可以像res$test
或res[["test"]]
訪問。
cut
是基於股劃分的標準工具。
我覺得我的做法是最簡單的一個:
idxTrain <- sample(nrow(dat),as.integer(nrow(dat)*0.7))
idxNotTrain <- which(! 1:nrow(dat) %in% idxTrain)
idxVal <- sample(idxNotTrain,as.integer(length(idxNotTrain)*0.333))
idxTest <- idxNotTrain[which(! idxNotTrain %in% idxVal)]
首先,將數據分成70%的訓練數據,其餘(idxNotTrain)。然後,其餘部分再次被分成驗證數據集(33%,總數據的10%)和其餘部分(測試數據,66%,總數據的20%)。
其中一些看起來過於複雜,這裏有一個簡單的方法,使用樣本將任何數據集分成3個或甚至任意數量的集合。
# Simple into 3 sets.
idx <- sample(seq(1, 3), size = nrow(iris), replace = TRUE, prob = c(.8, .2, .2))
train <- iris[idx == 1,]
test <- iris[idx == 2,]
cal <- iris[idx == 3,]
如果你寧願重用代碼:
# Or a function to split into arbitrary number of sets
test_split <- function(df, cuts, prob, ...)
{
idx <- sample(seq(1, cuts), size = nrow(df), replace = TRUE, prob = prob, ...)
z = list()
for (i in 1:cuts)
z[[i]] <- df[idx == i,]
z
}
z <- test_split(iris, 4, c(0.7, .1, .1, .1))
train <- z[1]
test <- z[2]
cal <- z[3]
other <- z[4]
這並不能保證子集的大小,因爲成員在整個觀測中是獨立的。特別是,一個子集可能完全是空的。 – Frank
這裏是一個解決方案可以與60,20,20分也確保沒有重疊。然而,適應分裂是個麻煩。如果有人可以幫助我,我很感激它
# Draw a random, stratified sample including p percent of the data
idx.train <- createDataPartition(y = known$return_customer, p = 0.8, list = FALSE)
train <- known[idx.train, ] # training set with p = 0.8
# test set with p = 0.2 (drop all observations with train indeces)
test <- known[-idx.train, ]
idx.validation <- createDataPartition(y = train$return_customer, p = 0.25, list = FALSE) # Draw a random, stratified sample of ratio p of the data
validation <- train[idx.validation, ] #validation set with p = 0.8*0.25 = 0.2
train60 <- train[-idx.validation, ] #final train set with p= 0.8*0.75 = 0.6
我不認爲這是一個非常有用的答案,考慮到除了您可以運行代碼之外沒有人。也許你應該閱讀一些關於爲這個網站編寫好的R問題的指導後發佈它作爲一個問題:http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example/28481250 #28481250 – Frank
你是對的!我在這裏發佈 http://stackoverflow.com/questions/41880453/how-to-adapt-datasplit-sizes-with-createdatapartition – Sev
好的,謝謝。那麼你可能想要刪除這個答案。 – Frank
讓我知道這是否會工作。只是一個簡化版本
sample_train<- sample(seq_len(nrow(mtcars)), size = floor(0.60*nrow(mtcars)))
sample_valid<- sample(seq_len(nrow(mtcars)), size = floor(0.20*nrow(mtcars)))
sample_test <- sample(seq_len(nrow(mtcars)), size = floor(0.20*nrow(mtcars)))
train <- mtcars[sample_train, ]
validation<- mtcars[sample_valid, ]
test <- mtcars[sample_test, ]
這很好,因爲所有的行將始終使用。多次使用'floor()'可以讓一些行丟失。 'split'返回列表當然是非常好的。 – Gregor