2014-10-19 59 views
2

我的任務是用svm做文本分類,用單詞n-gram作爲特徵。我的代碼是:如何用TF-IDF構造單詞n-gram的訓練矢量

word_dic = ngram.wordNgrams(text, n) 
freq_term_vector = [word_dic[gram] if gram in word_dic else 0 for gram in global_vector] 
X.append(freq_term_vector) 

它運作良好。然而,當我試圖TF-IDF,代碼如下:

freq_term_vector = [word_dic[gram] if gram in word_dic else 0 for gram in global_vector] 
tfidf = TfidfTransformer(norm="l2") 
tfidf.fit(freq_term_vector) 
X.append(tfidf.transform(freq_term_vector).toarray()) 

訓練部分都可以做,但是當程序運行到預測的一部分,它說

clf.predict(X_test) 
    File "/usr/lib/python2.7/dist-packages/sklearn/linear_model/base.py", line 223, in predict 
    scores = self.decision_function(X) 
    File "/usr/lib/python2.7/dist-packages/sklearn/linear_model/base.py", line 207, in decision_function 
    dense_output=True) + self.intercept_ 
    File "/usr/lib/python2.7/dist-packages/sklearn/utils/extmath.py", line 83, in safe_sparse_dot 
    return np.dot(a, b) 
ValueError: shapes (1100,1,38) and (1,11) not aligned: 38 (dim 2) != 1 (dim 0) 

的訓練方法和預測方法是一樣的。我如何解決這個對齊問題?任何人都可以幫我檢查我的代碼或給我一些想法?

回答

1

我認爲這個問題是追加,請嘗試以下操作:

... 
X = tfidf.transform(freq_term_vector) 
... 
X_test = tfidf.transform(freq_term_vector_test) 
clf.predict(X_test) 
+0

我看到的,真正的問題在於append方法。我嘗試了擴展方法,效果很好。謝謝! – allenwang 2014-10-21 03:23:05