0
正如我剛開始學習有關的神經網絡模型,我想知道,假如我有分類問題的數據集,我使用如何使用h2o.deeplearning()在一般情況下找到最優數量的紀元?
churn_model <- h2o.deeplearning(x = setdiff(names(churn), names(churn)[10]),
y = names(churn)[10],
training_frame = churnTrain,
validation_frame = churnValidation,
distribution = "multinomial",
activation = "RectifierWithDropout",
hidden = c(200,200,200),
hidden_dropout_ratio = c(0.1, 0.1, 0.1),
epochs = 50 , stopping_rounds = 0,
l1 = 1e-5)
那麼,如何可以通過任何功能或東西是什麼,將決定是我可以使用的時代的數量?