6
在keras.applications中,有一個在imagenet上預訓練的VGG16模型。在keras中的預訓練密集層之間添加丟失層
from keras.applications import VGG16
model = VGG16(weights='imagenet')
這種模式具有以下結構。
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 3, 224, 224) 0
____________________________________________________________________________________________________
block1_conv1 (Convolution2D) (None, 64, 224, 224) 1792 input_1[0][0]
____________________________________________________________________________________________________
block1_conv2 (Convolution2D) (None, 64, 224, 224) 36928 block1_conv1[0][0]
____________________________________________________________________________________________________
block1_pool (MaxPooling2D) (None, 64, 112, 112) 0 block1_conv2[0][0]
____________________________________________________________________________________________________
block2_conv1 (Convolution2D) (None, 128, 112, 112) 73856 block1_pool[0][0]
____________________________________________________________________________________________________
block2_conv2 (Convolution2D) (None, 128, 112, 112) 147584 block2_conv1[0][0]
____________________________________________________________________________________________________
block2_pool (MaxPooling2D) (None, 128, 56, 56) 0 block2_conv2[0][0]
____________________________________________________________________________________________________
block3_conv1 (Convolution2D) (None, 256, 56, 56) 295168 block2_pool[0][0]
____________________________________________________________________________________________________
block3_conv2 (Convolution2D) (None, 256, 56, 56) 590080 block3_conv1[0][0]
____________________________________________________________________________________________________
block3_conv3 (Convolution2D) (None, 256, 56, 56) 590080 block3_conv2[0][0]
____________________________________________________________________________________________________
block3_pool (MaxPooling2D) (None, 256, 28, 28) 0 block3_conv3[0][0]
____________________________________________________________________________________________________
block4_conv1 (Convolution2D) (None, 512, 28, 28) 1180160 block3_pool[0][0]
____________________________________________________________________________________________________
block4_conv2 (Convolution2D) (None, 512, 28, 28) 2359808 block4_conv1[0][0]
____________________________________________________________________________________________________
block4_conv3 (Convolution2D) (None, 512, 28, 28) 2359808 block4_conv2[0][0]
____________________________________________________________________________________________________
block4_pool (MaxPooling2D) (None, 512, 14, 14) 0 block4_conv3[0][0]
____________________________________________________________________________________________________
block5_conv1 (Convolution2D) (None, 512, 14, 14) 2359808 block4_pool[0][0]
____________________________________________________________________________________________________
block5_conv2 (Convolution2D) (None, 512, 14, 14) 2359808 block5_conv1[0][0]
____________________________________________________________________________________________________
block5_conv3 (Convolution2D) (None, 512, 14, 14) 2359808 block5_conv2[0][0]
____________________________________________________________________________________________________
block5_pool (MaxPooling2D) (None, 512, 7, 7) 0 block5_conv3[0][0]
____________________________________________________________________________________________________
flatten (Flatten) (None, 25088) 0 block5_pool[0][0]
____________________________________________________________________________________________________
fc1 (Dense) (None, 4096) 102764544 flatten[0][0]
____________________________________________________________________________________________________
fc2 (Dense) (None, 4096) 16781312 fc1[0][0]
____________________________________________________________________________________________________
predictions (Dense) (None, 1000) 4097000 fc2[0][0]
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________
我想微調這種模式與緻密層(FC1,FC2和預測)之間的差層,同時保持模型的所有預先訓練的權重不變。我知道可以用model.layers
做一些技巧,但我還沒有找到任何地方如何在現有圖層之間添加圖層。
這樣做的最佳做法是什麼?
跑進*同*確切的問題 - 非常感謝你的回答。 – Moondra