1
我想使用簡單的反向傳播和單熱編碼在多層神經網絡中將2D數據分爲3類。在將增量學習更改爲批量學習後,我的輸出收斂到0([0,0,0]
),主要是如果我使用更多數據或更高的學習速度。我不知道我是否需要衍生其他東西,或者如果我在代碼中犯了一些錯誤。神經網絡 - 輸出收斂到0,python
for each epoch: #pseudocode
for each input:
caluclate hiden neurons activations (logsig)
calculate output neurons activations (logsig)
#error propagation
for i in range(3):
error = (desired_out[i] - aktivations_out[i])
error_out[i] = error * deriv_logsig(aktivations_out[i])
t_weights_out = zip(*weights_out)
for i in range(hiden_neurons):
sum_error = sum(e*w for e, w in zip(error_out, t_weights_out[i]))
error_h[i] = sum_error * deriv_logsig(input_out[i])
#cumulate deltas
for i in range(len(weights_out)):
delta_out[i] = [d + x * coef * error_out[i] for d, x in zip(delta_out[i], input_out)]
for i in range(len(weights_h)):
delta_h[i] = [d + x * coef * error_h[i] for d, x in zip(delta_h[i], input)]
#batch learning after epoch
for i in range(len(weights_out)):
weights_out[i] = [w + delta for w, delta in zip(weights_out[i], delta_out[i])]
for i in range(len(weights_h)):
weights_h[i] = [w + delta for w, delta in zip(weights_h[i], delta_h[i])]