您可以按照先前的StackOverflow問題(Map each list value to its corresponding percentile)中所述計算數據數組中每個元素的百分位數。
import numpy as np
from scipy import stats
data = np.array([0.01, 0.02, 1, 1, 1, 2, 2, 8, 8, 4.5, 6.6])
方法1:使用scipy.stats.percentileofscore:
data_percentile = np.array([stats.percentileofscore(data, a) for a in data])
data_percentile
Out[1]:
array([ 9.09090909, 18.18181818, 36.36363636, 36.36363636,
36.36363636, 59.09090909, 59.09090909, 95.45454545,
95.45454545, 72.72727273, 81.81818182])
方法2:使用scipy.stats.rankdata和正火至100(快):
ranked = stats.rankdata(data)
data_percentile = ranked/len(data)*100
data_percentile
Out[2]:
array([ 9.09090909, 18.18181818, 36.36363636, 36.36363636,
36.36363636, 59.09090909, 59.09090909, 95.45454545,
95.45454545, 72.72727273, 81.81818182])
現在,你有百分的列表,你可以像以前一樣使用它們numpy.digitize:
bins_percentile = [0,20,40,60,80,100]
data_binned_indices = np.digitize(data_percentile, bins_percentile, right=True)
data_binned_indices
Out[3]:
array([1, 1, 2, 2, 2, 3, 3, 5, 5, 4, 5], dtype=int64)
這會根據您選擇的百分比列表的指數爲您提供分箱數據。如果需要,您還可以使用numpy.take返回實際(上限)百分位數:
data_binned_percentiles = np.take(bins_percentile, data_binned_indices)
data_binned_percentiles
Out[4]:
array([ 20, 20, 40, 40, 40, 60, 60, 100, 100, 80, 100])