0
我是新的python,我正在嘗試開發一個程序與梯度提升迴歸。 我有兩組大數據,一組訓練集和一組測試集,至少我有完全相同的列。我的目標是用訓練集的信息預測測試集的SeriousDlqin2yrs列。大提升迴歸:「TypeError:不能執行減少靈活類型」
這是我寫的程序:
import numpy as np
import csv as csv
import pandas as pd
from sklearn import ensemble
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.utils import shuffle
# Load data
csv_file_object = csv.reader(open('cs-training-cleandata2NOLOG.csv', 'rb')) #Load in the training csv file
header = csv_file_object.next() #Skip the fist line as it is a header
train_data=[] #Creat a variable called 'train_data'
for row in csv_file_object: #Skip through each row in the csv file
train_data.append(row[1:]) #adding each row to the data variable
train_data = np.array(train_data) #Then convert from a list to an array
test_file_object = csv.reader(open('cs-test-cleandata2NOLOG.csv', 'rb')) #Load in the test csv file
header = test_file_object.next() #Skip the fist line as it is a header
test_data=[] #Creat a variable called 'test_data'
ids = []
for row in test_file_object: #Skip through each row in the csv file
ids.append(row[0])
test_data.append(row[1:]) #adding each row to the data variable
test_data = np.array(test_data) #Then convert from a list to an array
test_data = np.delete(test_data,[0],1) #remove SeriousDlqin2yrs
print 'Training '
# Fit regression model
clf = GradientBoostingRegressor(n_estimators=1000, min_samples_split=100, learning_rate=0.01)
clf = clf.fit(train_data[0::,1::],train_data[0::,0])
print 'Predicting'
output=clf.predict(test_data)
open_file_object = csv.writer(open("GradientBoostedRegression1.1.csv", "wb"))
open_file_object.writerow(["Id","Probability"])
open_file_object.writerows(zip(ids, output))
但是當我運行該程序,蟒蛇給我這樣的回答:
Traceback (most recent call last):
File "C:\Users\Paul HONORE\Dropbox\Research Study\Kaggle\Bank\GradientBoostedRegression1.1.py", line 64, in <module>
clf = clf.fit(train_data[0::,1::],train_data[0::,0])
File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 1126, in fit
return super(GradientBoostingRegressor, self).fit(X, y)
File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 595, in fit
self.init_.fit(X, y)
File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 69, in fit
self.mean = np.mean(y)
File "C:\Python27\lib\site-packages\numpy\core\fromnumeric.py", line 2716, in mean
out=out, keepdims=keepdims)
File "C:\Python27\lib\site-packages\numpy\core\_methods.py", line 62, in _mean
ret = um.add.reduce(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
TypeError: cannot perform reduce with flexible type
不知從何方知道,我讀很多關於這個問題的論文,但從來沒有找到解決這個問題的方法。
非常感謝您的幫助。
[Python的 - 嘗試使用numpy.mean時「無法執行與靈活型減少」]的可能重複(http://stackoverflow.com/questions/20061095/python-cannot-perform - 使用靈活類型時嘗試使用numpy-mea) –
這不是一回事,我已經閱讀過這個主題,但這不是同一個問題。 – user3471868