2017-02-27 138 views
-4

我正在編寫一個程序,可以監視拉澤爾的紅點並跟蹤移動。我想收集激光的x和y運動(偏離穩定點)。有些搜索在git hub上找到了我的代碼,我打算修改它並使用它來使用openCV跟蹤紅點。然而,我很努力從這裏獲取任何數據。紅點跟蹤器

我該如何去在excel(或其他有用的方式)中存儲激光的x和y座標?

import sys 
import argparse 
import cv2 
import numpy 

class LaserTracker(object): 

     def __init__(self, cam_width=640, cam_height=480, hue_min=20, hue_max=160, 
       sat_min=100, sat_max=255, val_min=200, val_max=256, 
       display_thresholds=False): 
     """ 
     * ``cam_width`` x ``cam_height`` -- This should be the size of the 
     image coming from the camera. Default is 640x480. 
     HSV color space Threshold values for a RED laser pointer are determined 
     by: 
     * ``hue_min``, ``hue_max`` -- Min/Max allowed Hue values 
     * ``sat_min``, ``sat_max`` -- Min/Max allowed Saturation values 
     * ``val_min``, ``val_max`` -- Min/Max allowed pixel values 
     If the dot from the laser pointer doesn't fall within these values, it 
     will be ignored. 
     * ``display_thresholds`` -- if True, additional windows will display 
      values for threshold image channels. 
     """ 

     self.cam_width = cam_width 
     self.cam_height = cam_height 
     self.hue_min = hue_min 
     self.hue_max = hue_max 
     self.sat_min = sat_min 
     self.sat_max = sat_max 
     self.val_min = val_min 
     self.val_max = val_max 
     self.display_thresholds = display_thresholds 

     self.capture = None # camera capture device 
     self.channels = { 
      'hue': None, 
      'saturation': None, 
      'value': None, 
      'laser': None, 
     } 

     self.previous_position = None 
     self.trail = numpy.zeros((self.cam_height, self.cam_width, 3), 
           numpy.uint8) 

    def create_and_position_window(self, name, xpos, ypos): 
     """Creates a named widow placing it on the screen at (xpos, ypos).""" 
     # Create a window 
     cv2.namedWindow(name) 
     # Resize it to the size of the camera image 
     cv2.resizeWindow(name, self.cam_width, self.cam_height) 
     # Move to (xpos,ypos) on the screen 
     cv2.moveWindow(name, xpos, ypos) 

    def setup_camera_capture(self, device_num=0): 
     """Perform camera setup for the device number (default device = 0). 
     Returns a reference to the camera Capture object. 
     """ 
     try: 
      device = int(device_num) 
      sys.stdout.write("Using Camera Device: {0}\n".format(device)) 
     except (IndexError, ValueError): 
      # assume we want the 1st device 
      device = 0 
      sys.stderr.write("Invalid Device. Using default device 0\n") 

     # Try to start capturing frames 
     self.capture = cv2.VideoCapture(device) 
     if not self.capture.isOpened(): 
      sys.stderr.write("Faled to Open Capture device. Quitting.\n") 
      sys.exit(1) 

     # set the wanted image size from the camera 
     self.capture.set(
      cv2.cv.CV_CAP_PROP_FRAME_WIDTH if cv2.__version__.startswith('2') else cv2.CAP_PROP_FRAME_WIDTH, 
      self.cam_width 
     ) 
     self.capture.set(
      cv2.cv.CV_CAP_PROP_FRAME_HEIGHT if cv2.__version__.startswith('2') else cv2.CAP_PROP_FRAME_HEIGHT, 
      self.cam_height 
     ) 
     return self.capture 

    def handle_quit(self, delay=10): 
     """Quit the program if the user presses "Esc" or "q".""" 
     key = cv2.waitKey(delay) 
     c = chr(key & 255) 
     if c in ['c', 'C']: 
      self.trail = numpy.zeros((self.cam_height, self.cam_width, 3), 
            numpy.uint8) 
     if c in ['q', 'Q', chr(27)]: 
      sys.exit(0) 

    def threshold_image(self, channel): 
     if channel == "hue": 
      minimum = self.hue_min 
      maximum = self.hue_max 
     elif channel == "saturation": 
      minimum = self.sat_min 
      maximum = self.sat_max 
     elif channel == "value": 
      minimum = self.val_min 
      maximum = self.val_max 

     (t, tmp) = cv2.threshold(
      self.channels[channel], # src 
      maximum, # threshold value 
      0, # we dont care because of the selected type 
      cv2.THRESH_TOZERO_INV # t type 
     ) 

     (t, self.channels[channel]) = cv2.threshold(
      tmp, # src 
      minimum, # threshold value 
      255, # maxvalue 
      cv2.THRESH_BINARY # type 
     ) 

     if channel == 'hue': 
      # only works for filtering red color because the range for the hue 
      # is split 
      self.channels['hue'] = cv2.bitwise_not(self.channels['hue']) 

    def track(self, frame, mask): 
     """ 
     Track the position of the laser pointer. 
     Code taken from 
     http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/ 
     """ 
     center = None 

     countours = cv2.findContours(mask, cv2.RETR_EXTERNAL, 
            cv2.CHAIN_APPROX_SIMPLE)[-2] 

     # only proceed if at least one contour was found 
     if len(countours) > 0: 
      # find the largest contour in the mask, then use 
      # it to compute the minimum enclosing circle and 
      # centroid 
      c = max(countours, key=cv2.contourArea) 
      ((x, y), radius) = cv2.minEnclosingCircle(c) 
      moments = cv2.moments(c) 
      if moments["m00"] > 0: 
       center = int(moments["m10"]/moments["m00"]), \ 
         int(moments["m01"]/moments["m00"]) 
      else: 
       center = int(x), int(y) 

      # only proceed if the radius meets a minimum size 
      if radius > 10: 
       # draw the circle and centroid on the frame, 
       cv2.circle(frame, (int(x), int(y)), int(radius), 
          (0, 255, 255), 2) 
       cv2.circle(frame, center, 5, (0, 0, 255), -1) 
       # then update the ponter trail 
       if self.previous_position: 
        cv2.line(self.trail, self.previous_position, center, 
          (255, 255, 255), 2) 

     cv2.add(self.trail, frame, frame) 
     self.previous_position = center 

    def detect(self, frame): 
     hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 

     # split the video frame into color channels 
     h, s, v = cv2.split(hsv_img) 
     self.channels['hue'] = h 
     self.channels['saturation'] = s 
     self.channels['value'] = v 

     # Threshold ranges of HSV components; storing the results in place 
     self.threshold_image("hue") 
     self.threshold_image("saturation") 
     self.threshold_image("value") 

     # Perform an AND on HSV components to identify the laser! 
     self.channels['laser'] = cv2.bitwise_and(
      self.channels['hue'], 
      self.channels['value'] 
     ) 
     self.channels['laser'] = cv2.bitwise_and(
      self.channels['saturation'], 
      self.channels['laser'] 
     ) 

     # Merge the HSV components back together. 
     hsv_image = cv2.merge([ 
      self.channels['hue'], 
      self.channels['saturation'], 
      self.channels['value'], 
     ]) 

     self.track(frame, self.channels['laser']) 

     return hsv_image 

    def display(self, img, frame): 
     """Display the combined image and (optionally) all other image channels 
     NOTE: default color space in OpenCV is BGR. 
     """ 
     cv2.imshow('RGB_VideoFrame', frame) 
     cv2.imshow('LaserPointer', self.channels['laser']) 
     if self.display_thresholds: 
      cv2.imshow('Thresholded_HSV_Image', img) 
      cv2.imshow('Hue', self.channels['hue']) 
      cv2.imshow('Saturation', self.channels['saturation']) 
      cv2.imshow('Value', self.channels['value']) 

    def setup_windows(self): 
     sys.stdout.write("Using OpenCV version: {0}\n".format(cv2.__version__)) 

     # create output windows 
     self.create_and_position_window('LaserPointer', 0, 0) 
     self.create_and_position_window('RGB_VideoFrame', 
             10 + self.cam_width, 0) 
     if self.display_thresholds: 
      self.create_and_position_window('Thresholded_HSV_Image', 10, 10) 
      self.create_and_position_window('Hue', 20, 20) 
      self.create_and_position_window('Saturation', 30, 30) 
      self.create_and_position_window('Value', 40, 40) 

    def run(self): 
     # Set up window positions 
     self.setup_windows() 
     # Set up the camera capture 
     self.setup_camera_capture() 

     while True: 
      # 1. capture the current image 
      success, frame = self.capture.read() 
      if not success: # no image captured... end the processing 
       sys.stderr.write("Could not read camera frame. Quitting\n") 
       sys.exit(1) 

      hsv_image = self.detect(frame) 
      self.display(hsv_image, frame) 
      self.handle_quit() 


if __name__ == '__main__': 
    parser = argparse.ArgumentParser(description='Run the Laser Tracker') 
    parser.add_argument('-W', '--width', 
         default=640, 
         type=int, 
         help='Camera Width') 
    parser.add_argument('-H', '--height', 
         default=480, 
         type=int, 
         help='Camera Height') 
    parser.add_argument('-u', '--huemin', 
         default=20, 
         type=int, 
         help='Hue Minimum Threshold') 
    parser.add_argument('-U', '--huemax', 
         default=160, 
         type=int, 
         help='Hue Maximum Threshold') 
    parser.add_argument('-s', '--satmin', 
         default=100, 
         type=int, 
         help='Saturation Minimum Threshold') 
    parser.add_argument('-S', '--satmax', 
         default=255, 
         type=int, 
         help='Saturation Maximum Threshold') 
    parser.add_argument('-v', '--valmin', 
         default=200, 
         type=int, 
         help='Value Minimum Threshold') 
    parser.add_argument('-V', '--valmax', 
         default=255, 
         type=int, 
         help='Value Maximum Threshold') 
    parser.add_argument('-d', '--display', 
         action='store_true', 
         help='Display Threshold Windows') 
    params = parser.parse_args() 

    tracker = LaserTracker(
     cam_width=params.width, 
     cam_height=params.height, 
     hue_min=params.huemin, 
     hue_max=params.huemax, 
     sat_min=params.satmin, 
     sat_max=params.satmax, 
     val_min=params.valmin, 
     val_max=params.valmax, 
     display_thresholds=params.display 
    ) 
    tracker.run() 
+2

你好,只是一些建議,問好問題。儘量包含儘可能少的代碼。還試圖說明你是如何處理這個問題的,你的想法是什麼,編寫的代碼等等。你將得到更多有用的幫助和反饋。 –

+0

嗨,是的,我明白了,但是,在這個案例中,發佈代碼段在我的眼中並不有用,因爲我不知道我需要的特定信息在哪裏進行處理。這是由於我沒有編碼經驗。然而,我試圖從「軌道」功能提取數據。我會嘗試編輯它使其更有用。 –

+0

只有通過這個快速瀏覽,但它看起來像self.previous_position是包含x和y座標的元組。 –

回答

0

我絕不是這方面的專家,但快速看看代碼似乎self.previous_position =(x,y)。

不知道你爲什麼想保存到excel中,但保存到文件只需在運行函數的開始處添加f = open(filename,'w'),然後在該函數的f.write(self.previous_position)每個循環的結尾。

您的文件將包含記錄的所有記錄的x和y座標,如果您將此設置保存爲excel,請查看python的開箱即用csv庫。

+0

謝謝。我實際上設法使用'center = int(x),int(y)'來找到X,Y座標。我正在創建一個程序來監視一個紅點,從而在60秒內保存x和y座標。然後我有一個後置處理程序,將位移和時間轉換到頻域。我只是發現儲存excel給了我更多的數據可用性。 –