關於如何使用PyMC將兩個Normal分佈擬合爲數據,有a question on CrossValidated。的Cam.Davidson.Pilon答案是使用伯努利分佈數據分配到兩條法線之一: size = 10
p = Uniform("p", 0 , 1) #this is the fraction that come from mean1 vs mean2
ber = Bernoul
我寫了一個PyMC模型擬合3個法線使用數據(類似於一個在this question)。 import numpy as np
import pymc as mc
import matplotlib.pyplot as plt
n = 3
ndata = 500
# simulated data
v = np.random.randint(0, n, ndata)
data = (