我有一個程序性生成(無限)數據源,並試圖使用它作爲高級別Tensorflow Estimator
的輸入來訓練基於圖像的3D物體檢測器。「TypeError:'張量'對象是不可迭代的'與張量流量的錯誤估計器
我設置的數據集,就像在Tensorflor估計Quickstart,我dataset_input_fn
收益特徵的元組和標籤Tensor
的,就像Estimator.train
函數指定,這該怎麼tutorial shows,但我得到一個錯誤時,試圖調用列車功能:
TypeError: 'Tensor' object is not iterable.
我在做什麼錯?
def data_generator():
"""
Generator for image (features) and ground truth object positions (labels)
Sample an image and object positions from a procedurally generated data source
"""
while True:
source.step() # generate next data point
object_ground_truth = source.get_ground_truth() # list of 9 floats
cam_img = source.get_cam_frame() # image (224, 224, 3)
yield (cam_img, object_ground_truth)
def dataset_input_fn():
"""
Tensorflow `Dataset` object from generator
"""
dataset = tf.data.Dataset.from_generator(data_generator, (tf.uint8, tf.float32), \
(tf.TensorShape([224, 224, 3]), tf.TensorShape([9])))
dataset = dataset.batch(16)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
def main():
"""
Estimator [from Keras model](https://www.tensorflow.org/programmers_guide/estimators#creating_estimators_from_keras_models)
Try to call `est_vgg.train()` leads to the error
"""
....
est_vgg16 = tf.keras.estimator.model_to_estimator(keras_model=keras_vgg16)
est_vgg16.train(input_fn=dataset_input_fn, steps=10)
....
這裏是full code
(注:事情是從這個問題不同的名稱)
這裏是堆棧跟蹤:
Traceback (most recent call last):
File "./rock_detector.py", line 155, in <module>
main()
File "./rock_detector.py", line 117, in main
est_vgg16.train(input_fn=dataset_input_fn, steps=10)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 302, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 711, in _train_model
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 694, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/keras/_impl/keras/estimator.py", line 145, in model_fn
labels)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/keras/_impl/keras/estimator.py", line 92, in _clone_and_build_model
keras_model, features)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/keras/_impl/keras/estimator.py", line 58, in _create_ordered_io
for key in estimator_io_dict:
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 505, in __iter__
raise TypeError("'Tensor' object is not iterable.")
TypeError: 'Tensor' object is not iterable.
我想你只是想:'get_next = iterator.get_next(); est_vgg16.train(input_fn = get_next,steps = 10',但我沒有使用keras,所以我不完全熟悉那裏使用的'.train'函數。 –
您可以分享錯誤的完整堆棧跟蹤? – mrry
使用堆棧跟蹤進行了更新後,很難理解高級api背後發生了什麼,我通過切換到tf的更低級別的接口來實現儘可能多的工作,只是用發電機手動「餵食」,然而關於高級別api的好處是,它可以處理所有的訓練和細節,並且可以優化處理。 – matwilso