我有以下簡單的數據集。它由9個特徵組成,它是一個二元分類問題。下面顯示了一個特徵向量的例子。每行有其相應的0,1標籤。Keras建立一個網絡9維特徵向量
30,82,1,2.73,172,117,2,2,655.94
30,174,1,5.8,256,189,3,2,587.28
98.99,84,2,0.84,577,367,3,2,1237.34
30,28,1,0.93,38,35,2,1,112.35
...
我知道CNN被廣泛用於圖像分類,但我試圖將它應用於我手頭的數據集。我試圖應用5個大小爲2的濾鏡。我一直堅持讓網絡以正確的方式構建給定數據的形狀。這是我建立網絡的功能。
def make_network(num_features,nb_classes):
model = Sequential()
model.add(Convolution1D(5,2,border_mode='same',input_shape=(1,num_features)))
model.add(Activation('relu'))
model.add(Convolution1D(5,2,border_mode='same'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(2))
model.add(Activation('softmax'))
我還將最終調用測試函數來測試我創建的模型的準確性。下面的函數試圖實現這一
def train_model(model, X_train, Y_train, X_test, Y_test):
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.3, nesterov=True)
model.compile(loss='binary_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, nb_epoch=100, batch_size=10,
validation_split=0.1, verbose=1)
print('Testing...')
res = model.evaluate(X_test, Y_test,
batch_size=batch_size, verbose=1, show_accuracy=True)
print('Test accuracy: {0}'.format(res[1]))
當我做了模型,並通過其培訓功能,我收到以下錯誤
Using Theano backend.
Traceback (most recent call last):
File "./cnn.py", line 69, in <module>
train_model(model,x_train,y_train,x_test,y_test)
File "./cnn.py", line 19, in train_model
validation_split=0.1, verbose=1)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 413, in fit
sample_weight=sample_weight)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1011, in fit
batch_size=batch_size)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 938, in _standardize_user_data
exception_prefix='model input')
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 96, in standardize_input_data
str(array.shape))
Exception: Error when checking model input: expected convolution1d_input_1 to have 3:(None, 1, 9) dimensions, but got array with shape (4604, 9)
我是新來Keras
。我試圖修改here的代碼。任何幫助或指針將不勝感激。提前致謝。
重塑從X_train輸入(4604,9)〜(4604,1,9) – y300