0
我在三維網格上的每個點上都有一個矩陣。我需要計算每個點的特徵值和特徵向量,並按照特徵值的升序對它們進行排序。我使用python編寫了下面的測試用例,我能夠對特徵值進行排序,但是相關的特徵向量具有較大的維度。網格上的排序特徵值和特徵向量
import numpy as np
from numpy import linalg as LA
n = 2
a = np.zeros((3,3,n,n,n))
a[:,:,0,0,0] = [[5,0,0],[0,1,0],[0,0,3]]
a[:,:,1,1,1] = [[2,0,0],[0,3,0],[0,0,1]]
eigvals,eigvecs = LA.eig(a.swapaxes(0, -1).swapaxes(1,-2))
ev = eigvals.swapaxes(0,-1)
evecs = eigvecs.swapaxes(0,-1).swapaxes(1,-2)
evo = np.sort(ev,axis=0)
print evo[:,0,0,0],evo[:,1,1,1]
print evecs[:,:,0,0,0]
print evecs[:,:,1,1,1]
eveco = evecs[np.argsort(ev,axis=0)]
print np.shape(eveco)
print eveco[:,0,0,0,:,0,0,0] # decided after knowing the shape
print eveco[:,1,1,1,:,0,0,0] # decided after knowing the shape
它提供了正確的答案,但不是外形,eveco形狀應爲(3,3,2,2,2):
[ 1. 3. 5.] [ 1. 2. 3.]
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
(3, 2, 2, 2, 3, 2, 2, 2)
[[ 0. 1. 0.]
[ 0. 0. 1.]
[ 1. 0. 0.]]
[[ 0. 0. 1.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
它完美。我會嘗試更大的網格,但我相信它應該沒問題。 –