-1
我發現修改/分配numpy.ndarray就像: X [j,...,c] =東西。 不按我期望的方式工作。請參閱以下代碼段和相關輸出在Python(numpy)中修改ndarray的正確方法是什麼?
X_train_norm = np.zeros_like(X_train)
for j in range(100, 102):
for c in range(X_train.shape[-1]):
X_train_norm[j,...,c] = X_train[j,...,c] - means[j, c]
print(j, c, np.mean(X_train_norm[j,...,c]), np.mean(X_train[j,...,c] - means[j,c]))
100 0 152.491210938 0.0
100 1 153.384765625 0.0
100 2 164.598632812 0.0
101 0 148.837890625 0.0
101 1 151.559570312 0.0
101 2 162.604492188 0.0
(means is a Nx3 array and X_train is a Nx32x32x3 array)
什麼是創建輸出的正確方法?
編輯:我得到了它的代碼片段像這樣的工作:
z = X_train[j,...] - means[j,]
if X_train_norm is None:
X_train_norm = np.array(z, ndmin=4)
else:
X_train_norm = np.vstack([X_train_norm, np.array(z, ndmin=4)])
我肯定有一個更高效,更Python的方式來做到這一點。感謝您的期待!
' 「不工作我會expect'方式」 詳細點嗎? – Divakar
如果我計算'z = X_train [j,...,c] - 意味着[j,c]',z看起來與我做'X_train_norm [j,...,c] = .... '。輸出說明了這一點。 –
更新了代碼的代碼片段 –