我試圖從Software Foundations, vol. 2端口msubst_R
Agda。我試圖通過對術語使用類型化表示來避免繁重的工作。下面是我的一切到msubst_R
;我認爲以下一切都很好,但這是有問題的部分。從Coq到Agda的移植(簡單型)lambda微積分術語飽和證明
open import Data.Nat
open import Relation.Binary.PropositionalEquality hiding (subst)
open import Data.Empty
open import Data.Unit
open import Relation.Binary
open import Data.Star
open import Level renaming (zero to lzero)
open import Data.Product
open import Function.Equivalence hiding (sym)
open import Function.Equality using (_⟨$⟩_)
data Ty : Set where
fun : Ty → Ty → Ty
infixl 21 _▷_
data Ctx : Set where
[] : Ctx
_▷_ : Ctx → Ty → Ctx
data Var (t : Ty) : Ctx → Set where
vz : ∀ {Γ} → Var t (Γ ▷ t)
vs : ∀ {Γ u} → Var t Γ → Var t (Γ ▷ u)
data _⊆_ : Ctx → Ctx → Set where
done : ∀ {Δ} → [] ⊆ Δ
keep : ∀ {Γ Δ a} → Γ ⊆ Δ → Γ ▷ a ⊆ Δ ▷ a
drop : ∀ {Γ Δ a} → Γ ⊆ Δ → Γ ⊆ Δ ▷ a
⊆-refl : ∀ {Γ} → Γ ⊆ Γ
⊆-refl {[]} = done
⊆-refl {Γ ▷ _} = keep ⊆-refl
data Tm (Γ : Ctx) : Ty → Set where
var : ∀ {t} → Var t Γ → Tm Γ t
lam : ∀ t {u} → (e : Tm (Γ ▷ t) u) → Tm Γ (fun t u)
app : ∀ {u t} → (f : Tm Γ (fun u t)) → (e : Tm Γ u) → Tm Γ t
wk-var : ∀ {Γ Δ t} → Γ ⊆ Δ → Var t Γ → Var t Δ
wk-var done()
wk-var (keep Γ⊆Δ) vz = vz
wk-var (keep Γ⊆Δ) (vs v) = vs (wk-var Γ⊆Δ v)
wk-var (drop Γ⊆Δ) v = vs (wk-var Γ⊆Δ v)
wk : ∀ {Γ Δ t} → Γ ⊆ Δ → Tm Γ t → Tm Δ t
wk Γ⊆Δ (var v) = var (wk-var Γ⊆Δ v)
wk Γ⊆Δ (lam t e) = lam t (wk (keep Γ⊆Δ) e)
wk Γ⊆Δ (app f e) = app (wk Γ⊆Δ f) (wk Γ⊆Δ e)
data _⊢⋆_ (Γ : Ctx) : Ctx → Set where
[] : Γ ⊢⋆ []
_▷_ : ∀ {Δ t} → Γ ⊢⋆ Δ → Tm Γ t → Γ ⊢⋆ Δ ▷ t
⊢⋆-wk : ∀ {Γ Δ} t → Γ ⊢⋆ Δ → Γ ▷ t ⊢⋆ Δ
⊢⋆-wk t [] = []
⊢⋆-wk t (σ ▷ e) = (⊢⋆-wk t σ) ▷ wk (drop ⊆-refl) e
⊢⋆-mono : ∀ {Γ Δ t} → Γ ⊢⋆ Δ → Γ ▷ t ⊢⋆ Δ ▷ t
⊢⋆-mono σ = ⊢⋆-wk _ σ ▷ var vz
⊢⋆-refl : ∀ {Γ} → Γ ⊢⋆ Γ
⊢⋆-refl {[]} = []
⊢⋆-refl {Γ ▷ _} = ⊢⋆-mono ⊢⋆-refl
subst-var : ∀ {Γ Δ t} → Γ ⊢⋆ Δ → Var t Δ → Tm Γ t
subst-var []()
subst-var (σ ▷ x) vz = x
subst-var (σ ▷ x) (vs v) = subst-var σ v
subst : ∀ {Γ Δ t} → Γ ⊢⋆ Δ → Tm Δ t → Tm Γ t
subst σ (var x) = subst-var σ x
subst σ (lam t e) = lam t (subst (⊢⋆-mono σ) e)
subst σ (app f e) = app (subst σ f) (subst σ e)
data Value : {Γ : Ctx} → {t : Ty} → Tm Γ t → Set where
lam : ∀ {Γ t} → ∀ u (e : Tm _ t) → Value {Γ} (lam u e)
data _==>_ {Γ} : ∀ {t} → Rel (Tm Γ t) lzero where
app-lam : ∀ {t u} (f : Tm _ t) {v : Tm _ u} → Value v → app (lam u f) v ==> subst (⊢⋆-refl ▷ v) f
appˡ : ∀ {t u} {f f′ : Tm Γ (fun u t)} → f ==> f′ → (e : Tm Γ u) → app f e ==> app f′ e
appʳ : ∀ {t u} {f} → Value {Γ} {fun u t} f → ∀ {e e′ : Tm Γ u} → e ==> e′ → app f e ==> app f e′
_==>*_ : ∀ {Γ t} → Rel (Tm Γ t) _
_==>*_ = Star _==>_
NF : ∀ {a b} {A : Set a} → Rel A b → A → Set _
NF step x = ∄ (step x)
value⇒normal : ∀ {Γ t e} → Value {Γ} {t} e → NF _==>_ e
value⇒normal (lam t e) (_ ,())
Deterministic : ∀ {a b} {A : Set a} → Rel A b → Set _
Deterministic step = ∀ {x y y′} → step x y → step x y′ → y ≡ y′
deterministic : ∀ {Γ t} → Deterministic (_==>_ {Γ} {t})
deterministic (app-lam f _) (app-lam ._ _) = refl
deterministic (app-lam f v) (appˡ() _)
deterministic (app-lam f v) (appʳ f′ e) = ⊥-elim (value⇒normal v (, e))
deterministic (appˡ() e) (app-lam f v)
deterministic (appˡ f e) (appˡ f′ ._) = cong _ (deterministic f f′)
deterministic (appˡ f e) (appʳ f′ _) = ⊥-elim (value⇒normal f′ (, f))
deterministic (appʳ f e) (app-lam f′ v) = ⊥-elim (value⇒normal v (, e))
deterministic (appʳ f e) (appˡ f′ _) = ⊥-elim (value⇒normal f (, f′))
deterministic (appʳ f e) (appʳ f′ e′) = cong _ (deterministic e e′)
Halts : ∀ {Γ t} → Tm Γ t → Set
Halts e = ∃ λ e′ → e ==>* e′ × Value e′
value⇒halts : ∀ {Γ t e} → Value {Γ} {t} e → Halts e
value⇒halts {e = e} v = e , ε , v
-- -- This would not be strictly positive!
-- data Saturated : ∀ {Γ t} → Tm Γ t → Set where
-- fun : ∀ {t u} {f : Tm [] (fun t u)} → Halts f → (∀ {e} → Saturated e → Saturated (app f e)) → Saturated f
mutual
Saturated : ∀ {t} → Tm [] t → Set
Saturated e = Halts e × Saturated′ _ e
Saturated′ : ∀ t → Tm [] t → Set
Saturated′ (fun t u) f = ∀ {e} → Saturated e → Saturated (app f e)
saturated⇒halts : ∀ {t e} → Saturated {t} e → Halts e
saturated⇒halts = proj₁
step‿preserves‿halting : ∀ {Γ t} {e e′ : Tm Γ t} → e ==> e′ → Halts e ⇔ Halts e′
step‿preserves‿halting {e = e} {e′ = e′} step = equivalence fwd bwd
where
fwd : Halts e → Halts e′
fwd (e″ , ε , v) = ⊥-elim (value⇒normal v (, step))
fwd (e″ , s ◅ steps , v) rewrite deterministic step s = e″ , steps , v
bwd : Halts e′ → Halts e
bwd (e″ , steps , v) = e″ , step ◅ steps , v
step‿preserves‿saturated : ∀ {t} {e e′ : Tm _ t} → e ==> e′ → Saturated e ⇔ Saturated e′
step‿preserves‿saturated step = equivalence (fwd step) (bwd step)
where
fwd : ∀ {t} {e e′ : Tm _ t} → e ==> e′ → Saturated e → Saturated e′
fwd {fun s t} step (halts , sat) = Equivalence.to (step‿preserves‿halting step) ⟨$⟩ halts , λ e → fwd (appˡ step _) (sat e)
bwd : ∀ {t} {e e′ : Tm _ t} → e ==> e′ → Saturated e′ → Saturated e
bwd {fun s t} step (halts , sat) = Equivalence.from (step‿preserves‿halting step) ⟨$⟩ halts , λ e → bwd (appˡ step _) (sat e)
step*‿preserves‿saturated : ∀ {t} {e e′ : Tm _ t} → e ==>* e′ → Saturated e ⇔ Saturated e′
step*‿preserves‿saturated ε = id
step*‿preserves‿saturated (step ◅ steps) = step*‿preserves‿saturated steps ∘ step‿preserves‿saturated step
請注意,我已經刪除了bool
和pair
類型,因爲他們沒有必要顯示我的問題。
的問題,那麼,與msubst_R
(我稱之爲saturate
下文):
data Instantiation : ∀ {Γ} → [] ⊢⋆ Γ → Set where
[] : Instantiation []
_▷_ : ∀ {Γ t σ} → Instantiation {Γ} σ → ∀ {e} → Value {_} {t} e × Saturated e → Instantiation (σ ▷ e)
saturate-var : ∀ {Γ σ} → Instantiation σ → ∀ {t} (x : Var t Γ) → Saturated (subst-var σ x)
saturate-var (_ ▷ (_ , sat)) vz = sat
saturate-var (env ▷ _) (vs x) = saturate-var env x
app-lam* : ∀ {Γ t} {e e′ : Tm Γ t} → e ==>* e′ → Value e′ → ∀ {u} (f : Tm _ u) → app (lam t f) e ==>* subst (⊢⋆-refl ▷ e′) f
app-lam* steps v f = gmap _ (appʳ (lam _ _)) steps ◅◅ app-lam f v ◅ ε
saturate : ∀ {Γ σ} → Instantiation σ → ∀ {t} → (e : Tm Γ t) → Saturated (subst σ e)
saturate env (var x) = saturate-var env x
saturate env (lam u f) = value⇒halts (lam u _) , sat-f
where
f′ = subst _ f
sat-f : ∀ {e : Tm _ u} → Saturated e → Saturated (app (lam u f′) e)
sat-f [email protected]((e′ , steps , v) , _) =
Equivalence.from (step*‿preserves‿saturated (app-lam* steps v f′)) ⟨$⟩ saturate ([] ▷ (v , Equivalence.to (step*‿preserves‿saturated steps) ⟨$⟩ sat)) f′
saturate env (app f e) with saturate env f | saturate env e
saturate env (app f e) | _ , sat-f | sat-e = sat-f sat-e
saturate
沒有通過終止檢查,因爲在lam
情況下,sat-f
遞歸入saturate
上f′
,這不一定小於lam u f
;並且[] ▷ e′
也不一定小於σ
。
查看saturate
未終止的另一種方法是查看saturate env (app f e)
。在這裏,遞增到f
和(潛在地)e
將增長t
,儘管所有其他情況或者使t
相同並縮小術語,或者縮小t
。因此,如果saturate env (app f e)
沒有遞歸到saturate env f
和saturate env e
,則saturate env (lam u f)
中的遞歸本身不會有問題。然而,我認爲我的代碼對於app f e
的情況做了正確的事情(因爲這是圍繞函數類型的參數飽和證明拖延的整點),所以它應該是lam u f
的情況,我需要一個棘手的方法其中f′
小於lam u f
。
我錯過了什麼?
你也可以看[這](https://github.com/AndrasKovacs/misc-stuff/blob/master/agda/oplss/WeakEval.agda)在弱的call-by-名評價阿格達。 –
請注意,在我的真實代碼中,我確實有SF書中的'bool'類型,爲了簡潔起見,我沒有將它包含在我的代碼中。 – Cactus