我想適合我自己的分配我的數據,發現分佈相匹配的數據,最終發現在分佈中的峯的FWHM的最佳參數。從我讀過的內容來看,fitdistrplus包就是這樣做的。我知道數據在二次背景上呈現洛倫茲峯的形狀。[R適合用戶定義的分佈
圖中的數據的:使用 plot of raw data
的原始數據:
data = c(0,2,5,4,5,4,3,3,2,2,0,4,4,2,5,5,3,3,4,4,4,3,3,5,5,6,6,8,4,0,6,5,7,5,6,3,2,1,7,0,7,9,5,7,5,3,5,5,4,1,4,8,10,2,5,8,7,14,7,5,8,4,2,2,6,5,4,6,5,7,5,4,8,5,4,8,11,9,4,8,11,7,8,6,9,5,8,9,10,8,4,5,8,10,9,12,10,10,5,5,9,9,11,19,17,9,17,10,17,18,11,14,15,12,11,14,12,10,10,8,7,13,14,17,18,16,13,16,14,17,20,15,12,15,16,18,24,23,20,17,21,20,20,23,20,15,20,28,27,26,20,17,19,27,21,28,32,29,20,19,24,19,19,22,27,28,23,37,41,42,34,37,29,28,28,27,38,32,37,33,23,29,55,51,41,50,44,46,53,63,49,50,47,54,54,43,45,58,54,55,67,52,57,67,69,62,62,65,56,72,75,88,87,77,70,71,84,85,81,84,75,78,80,82,107,102,98,82,93,98,90,94,118,107,113,103,99,103,96,108,114,136,126,126,124,130,126,113,120,107,107,106,107,136,143,135,151,132,117,118,108,120,145,140,122,135,153,157,133,130,128,109,106,122,133,132,150,156,158,150,137,147,150,146,144,144,149,171,185,200,194,204,211,229,225,235,228,246,249,238,214,228,250,275,311,323,327,341,368,381,395,449,474,505,529,585,638,720,794,896,919,1008,1053,1156,1134,1174,1191,1202,1178,1236,1200,1130,1094,1081,1009,949,890,810,760,690,631,592,561,515,501,489,467,439,388,377,348,345,310,298,279,253,257,259,247,237,223,227,217,210,213,197,197,192,195,198,201,202,211,193,203,198,202,174,164,162,173,170,184,170,168,175,170,170,168,162,149,139,145,151,144,152,155,170,156,149,147,158,171,163,146,151,150,147,137,123,127,136,149,147,124,137,133,129,130,128,139,137,147,141,123,112,136,147,126,117,116,100,110,120,105,91,100,100,105,92,88,78,95,75,75,82,82,80,83,83,66,73,80,76,69,81,93,79,71,80,90,72,72,63,57,53,62,65,49,51,57,73,54,56,78,65,52,58,49,47,56,46,43,50,43,40,39,36,45,28,35,36,43,48,37,36,35,39,31,24,29,37,26,22,36,33,24,31,31,20,30,28,23,21,27,26,29,21,20,22,18,19,19,20,21,20,25,18,12,18,20,20,13,14,21,20,16,18,12,17,20,24,21,20,18,11,17,12,5,11,13,16,13,13,12,12,9,15,13,15,11,12,11,8,13,16,16,16,14,8,8,10,11,11,17,15,15,9,9,13,12,3,11,14,11,14,13,8,7,7,15,12,8,12,14,9,5,2,10,8)
我已經計算其限定的分佈和累積分佈方程:
dFF <- function(x,a,b,c,A,gamma,pos) a + b*x + (c*x^2) + ((A/pi)*(gamma/(((x-pos)^2) + (gamma^2))))
pFF <- function(x,a,b,c,A,gamma,pos) a*x + (b/2)*(x^2) + (c/3)*(x^3) + A/2 + (A/pi)*(atan((x - pos)/gamma))
相信這些是正確的。從我的理解,一個分佈擬合應該只使用這些使用fitdist(或mledist)方法的定義可能:
fitdist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331))
mledist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331))
它返回fitdist聲明「功能不能在初始參數進行評估>錯誤(數據, 「FF」,開始=列表(0,0.3%,-4E-04,70000,13,331)):該函數MLE未能估計參數,與在第一種情況下的錯誤代碼100'和在第二我只是得到估計值的「不適用」值列表。
我然後計算出的函數,得到位數分配值,以使用其他擬合方法(qmefit):這個代碼的
qFF <- function(p,a,b,c,A,gamma,pos)
{
qList = c()
axis = seq(1,600,1)
aF = dFF(axis,a,b,c,A,gamma,pos)
arr = histogramCpp(aF) # change data to a histogram format
for(element in 1:length(p)){
q = quantile(arr,p[element], names=FALSE)
qList = c(qList,q)
}
return(qList)
}
部分要求調用C++函數(通過使用庫RCPP):
#include <Rcpp.h>
#include <vector>
#include <math.h>
using namespace Rcpp;
// [[Rcpp::export]]
std::vector<int> histogramCpp(NumericVector x) {
std::vector<int> arr;
double number, fractpart, intpart;
for(int i = 0; i <= 600; i++){
number = (x[i]);
fractpart = modf(number , &intpart);
if(fractpart < 0.5){
number = (int) intpart;
}
if(fractpart >= 0.5){
number = (int) (intpart+1);
}
for(int j = 1; j <= number; j++){
arr.push_back(i);
}
}
return arr;
}
該C++方法只是接通數據轉換成的直方圖的格式。如果描述數據的矢量的第一個元素是4,則向返回的矢量等添加4次「1」。這似乎也適用於返回明智的價值觀。分位數函數的曲線圖:
fitdist(data,'FF', start = list(0,0.3,-0.0004,70000,13,331), method = 'qme', probs = c(0,0.3,0.4,0.5,0.7,0.9))
我選擇了「probs」值作爲隨機我不完全:
Plot of quantiles returned for probabilities from 0 to 1 in steps of 0.001
在「qmefit」方法然後可以通過fitdist功能嘗試瞭解他們的意思。這可能會導致R會話崩潰或短暫的斷斷續續會返回一個「NA」值列表作爲估計值並且行<std::bad_alloc : std::bad_alloc>
我不確定在這裏是否犯了一個基本錯誤,並且有任何幫助或建議讚賞。