0
我想建立使用theano了深刻的網絡。但準確度爲零。我無法弄清楚我的錯誤。我正在嘗試創建一個帶有3個隱藏層和一個輸出的深度學習網絡。我打算做一個分類任務,我有5個班。因此,輸出層有5個節點。深層網絡產生零精度
有什麼建議嗎?
#!/usr/bin/env python
from __future__ import print_function
import theano
import theano.tensor as T
import lasagne
import numpy as np
import sklearn.datasets
import os
import csv
import pandas as pd
# Lasagne is pre-release, so it's interface is changing.
# Whenever there's a backwards-incompatible change, a warning is raised.
# Let's ignore these for the course of the tutorial
import warnings
warnings.filterwarnings('ignore', module='lasagne')
from lasagne.objectives import categorical_crossentropy, aggregate
#load the data and prepare it
df = pd.read_excel('risk_sample_data_9.20.16_anon.xls',skiprows=0)
rawdata = df.values
# remove empty rows (odd rows)
mask = np.ones(len(rawdata), dtype=bool)
mask[::2] = False
data = rawdata[mask]
idx = np.array([1,5,6,7])
m = np.zeros_like(data)
m[:,idx] = 1
X = np.ma.masked_array(data,m)
X = np.ma.filled(X, fill_value=0)
X = X.astype(theano.config.floatX)
y = data[:,7] # extract financial rating labels
# convert char lables into int , A=1 , B=2, C=3, D=4, F=5
y[y == 'A'] = 1
y[y == 'B'] = 2
y[y == 'C'] = 3
y[y == 'D'] = 4
y[y == 'F'] = 5
y = pd.to_numeric(y)
y = y.astype('int32')
#y = y.astype(theano.config.floatX)
N_CLASSES = 5
# First, construct an input layer.
# The shape parameter defines the expected input shape,
# which is just the shape of our data matrix data.
l_in = lasagne.layers.InputLayer(shape=X.shape)
# We'll create a network with two dense layers:
# A tanh hidden layer and a softmax output layer.
l_hidden1 = lasagne.layers.DenseLayer(
# The first argument is the input layer
l_in,
# This defines the layer's output dimensionality
num_units=250,
# Various nonlinearities are available
nonlinearity=lasagne.nonlinearities.rectify)
l_hidden2 = lasagne.layers.DenseLayer(
# The first argument is the input layer
l_hidden1,
# This defines the layer's output dimensionality
num_units=100,
# Various nonlinearities are available
nonlinearity=lasagne.nonlinearities.rectify)
l_hidden3 = lasagne.layers.DenseLayer(
# The first argument is the input layer
l_hidden2,
# This defines the layer's output dimensionality
num_units=50,
# Various nonlinearities are available
nonlinearity=lasagne.nonlinearities.rectify)
l_hidden4 = lasagne.layers.DenseLayer(
# The first argument is the input layer
l_hidden3,
# This defines the layer's output dimensionality
num_units=10,
# Various nonlinearities are available
nonlinearity=lasagne.nonlinearities.sigmoid)
# For our output layer, we'll use a dense layer with a softmax nonlinearity.
l_output = lasagne.layers.DenseLayer(
l_hidden4, num_units=N_CLASSES, nonlinearity=lasagne.nonlinearities.softmax)
net_output = lasagne.layers.get_output(l_output)
# As a loss function, we'll use Theano's categorical_crossentropy function.
# This allows for the network output to be class probabilities,
# but the target output to be class labels.
true_output = T.ivector('true_output')
# get_loss computes a Theano expression for the objective,
# given a target variable
# By default, it will use the network's InputLayer input_var,
# which is what we want.
#loss = objective.get_loss(target=true_output)
loss = lasagne.objectives.categorical_crossentropy(net_output, true_output)
loss = aggregate(loss, mode='mean')
# Retrieving all parameters of the network is done using get_all_params,
# which recursively collects the parameters of all layers
# connected to the provided layer.
all_params = lasagne.layers.get_all_params(l_output)
# Now, we'll generate updates using Lasagne's SGD function
updates = lasagne.updates.sgd(loss, all_params, learning_rate=1)
# Finally, we can compile Theano functions for training and
# computing the output.
# Note that because loss depends on the input variable of our input layer,
# we need to retrieve it and tell Theano to use it.
train = theano.function([l_in.input_var, true_output], loss, updates=updates)
get_output = theano.function([l_in.input_var], net_output)
def eq(x, y):
if x==y:
return 1
return 0
print("Training ...")
# Train for 100 epochs
for n in xrange(10):
train(X, y)
y_predicted = np.argmax(get_output(X), axis=1)
correct = reduce(lambda a, b: a+b, map(eq, y_predicted, y))
print("Iteration {} correct prediction {}".format(n, correct))
# Compute the predicted label of the training data.
# The argmax converts the class probability output to class label
y_predicted = np.argmax(get_output(X), axis=1)
print(y_predicted)
你吃過看看數據?你能從它得到非零的準確性嗎?你看過網絡的預測嗎?它總是一樣嗎?沒有培訓的準確度是多少? –