1
我有一個數字形式的原始頁面和同一頁面的多個掃描版本。我的目標是歪斜掃描的頁面,以便儘可能匹配原始頁面。我知道我可以使用here中描述的概率霍夫變換來固定旋轉,但掃描後的紙張尺寸也有所不同,因爲有些人將頁面縮放爲不同的紙張格式。我認爲OpenCV中的findHomography()函數結合SIFT/SURF的關鍵點正是我需要解決這個問題的。但是,我無法讓我的deskew()函數工作。使用OpenCV和SIFT/SURF去偏移掃描圖像以匹配原始圖像
我的代碼大部分源於以下兩個來源: http://www.learnopencv.com/homography-examples-using-opencv-python-c/和http://docs.opencv.org/3.1.0/d1/de0/tutorial_py_feature_homography.html。
import numpy as np
import cv2
from matplotlib import pyplot as plt
# FIXME: doesn't work
def deskew():
im_out = cv2.warpPerspective(img1, M, (img2.shape[1], img2.shape[0]))
plt.imshow(im_out, 'gray')
plt.show()
# resizing images to improve speed
factor = 0.4
img1 = cv2.resize(cv2.imread("image.png", 0), None, fx=factor, fy=factor, interpolation=cv2.INTER_CUBIC)
img2 = cv2.resize(cv2.imread("imageSkewed.png", 0), None, fx=factor, fy=factor, interpolation=cv2.INTER_CUBIC)
surf = cv2.xfeatures2d.SURF_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good
]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good
]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
h, w = img1.shape
pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
deskew()
img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
else:
print("Not enough matches are found - %d/%d" % (len(good), MIN_MATCH_COUNT))
matchesMask = None
# show matching keypoints
draw_params = dict(matchColor=(0, 255, 0), # draw matches in green color
singlePointColor=None,
matchesMask=matchesMask, # draw only inliers
flags=2)
img3 = cv2.drawMatches(img1, kp1, img2, kp2, good, None, **draw_params)
plt.imshow(img3, 'gray')
plt.show()
我做類似[這裏](東西https://stackoverflow.com/questions/32435488/align-x-ray-images-find-rotation-rotate-and -crop/32441230#32441230)這可能是有幫助的。 –
@MartinEvans謝謝,這很相似,但我需要的是儘可能地將偏斜圖像與原始圖像對齊。我剛剛發現這個[Mathlab教程](https://ch.mathworks.com/help/vision/examples/find-image-rotation-and-scale-using-automated-feature-matching.html?requestedDomain=www.mathworks .com)完全解決了我的問題,但不幸的是我沒有得到第5步。你知道如何調整我的示例代碼以使其工作嗎? –