0
我正在嘗試做批量正態分佈測試。批量正態分佈測試
我的數據是這樣的:
"Date","Department","Discipline","Employee ID","SumOfBillable Hrs"
"10/09/2012","D","B",50084.00,8.00
"10/09/2012","D","C",51870.00,10.00
"10/09/2012","D","E",50216.00,10.00
"10/09/2012","D","E",53422.00,9.00
"10/09/2012","D","E",53765.00,10.00
"14/01/2013","E","Y",53146.00,9.00
"14/01/2013","E","Y",53202.00,9.00
"14/01/2013","E","Y",54470.00,9.00
"14/01/2013","SITE","0",54525.00,9.00
"14/02/2013","D","C",51870.00,10.00
"14/02/2013","D","E",50029.00,8.50
"14/02/2013","D","E",50216.00,9.00
"14/02/2013","D","E",53422.00,4.00
我想查下各個Employee_ID
的時間分佈。
有沒有批量的方法來做到這一點? 我有80多個IDs
。因此,單獨採取每個ID
並繪製/創建描述性統計數據將是相當乏味的。
謝謝
添加您的數據樣本,以幫助我們理解和回答您的問題 – Pop 2013-02-27 08:24:54
你可以很容易地通過你的「的Employee_ID」變量拆分「小時」變量和計算描述性統計和使用'對得到的lapply'產生地塊名單。顯示一些示例數據,您可能會得到更具體的答案。 – A5C1D2H2I1M1N2O1R2T1 2013-02-27 08:30:30
這些是相關的:http://stackoverflow.com/questions/7781798/seeing-if-data-is-normally-distributed-in-r,http://stats.stackexchange.com/questions/2492/is-normality -testing-essentially-useless – Ben 2013-02-27 09:36:40