0
我有一個看起來像這樣的時間序列數據:代表熊貓描述()在字典的形式
>>> data
cost Timestamp value
0 0.0032 2016-10-01 00:00:00-04:00 0.0179
1 0.0033 2016-10-01 01:00:00-04:00 0.0181
2 0.0741 2016-10-01 02:00:00-04:00 0.4117
3 0.0679 2016-10-01 03:00:00-04:00 0.3769
4 0.0761 2016-10-01 04:00:00-04:00 0.4230
5 0.0868 2016-10-01 05:00:00-04:00 0.4823
...
我希望能夠代表的摘要如下的價值由字典的形式分組,使得它可通過一個RESTful框架返回
>>> times = pd.DatetimeIndex(data['Timestamp'])
>>> data.groupby(times.time).describe()
cost value
00:00:00 count 43.000000 43.000000
mean 0.004323 0.024060
std 0.003811 0.021196
min 0.003200 0.017500
25% 0.003200 0.017800
50% 0.003200 0.017900
75% 0.003200 0.018000
max 0.023100 0.128300
01:00:00 count 44.000000 44.000000
mean 0.010641 0.059143
std 0.015058 0.083642
min 0.003200 0.017500
25% 0.003200 0.017800
50% 0.003200 0.018000
75% 0.011600 0.064400
max 0.058300 0.323700
...
23:00:00 count 44.000000 44.000000
mean 0.028773 0.159902
std 0.003627 0.020182
min 0.022900 0.127500
25% 0.025600 0.142500
50% 0.029350 0.162850
75% 0.031575 0.175200
max 0.036100 0.200300
我想輸出看起來像這樣
{
summary: [
{time: 00:00:00,
cost: {count: 43,
mean: 0.04323
std: ...
...
max: 0.0231}},
value: {count: 43,
mean: 0.02406
std: ...
...
max: 0.12830}
},
{time: 01:00:00,
cost: {...},
value: {...},
},
...,
{time: 23:00:00,
cost: {...},
value: {...},
}
]
}
我在大熊貓to_dict()
功能測試的樣式,但沒有完全得到的結果我想