3
我有一個三角式sympy:如何簡化三角函數表達
(-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/((cos(2*x) + 4))
我知道簡化爲
sqrt(3)*3*cos(x) + 7*sin(x)
,但我似乎無法找到一種方法使用sympy做到這一點。有沒有一個聰明的做法呢?
In [1]: from sympy import *
In [2]: from sympy.abc import x
In [3]: a = (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/((cos(2*x) + 4))
In [4]: b = sqrt(3)*3*cos(x) + 7*sin(x)
In [5]: trigsimp(a-b)
Out[5]: 0
In [6]: trigsimp(a)
Out[6]: (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/(cos(2*x) + 4)
In [7]: a.simplify()
Out[7]: (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/(cos(2*x) + 4)
In [8]: trigsimp(expand_trig(a))
Out[8]: (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/(cos(2*x) + 4)
In [9]: expand_trig(trigsimp(a))
Out[9]: (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/(2*cos(x)**2 + 3)
In [10]: fu(a)
Out[10]: (-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/(cos(2*x) + 4)
即不工作,但是,對於(7 * SIN(Q) - 9 * SQRT(3)* COS(Q) - 2 * COS(3 * Q +π/ 6))/(4 *(2 * sin(q)** 2-5))= cos(q + pi/6)。我相信這需要一些藝術。 – pheon