我正在研究一個項目,該項目需要查找新圖像移動並旋轉w.r.t舊圖像的程度。我正在嘗試使用fft來實現它。但是,它適用於某些情況,而其他情況不適用。我遵循的步驟如下:python中的圖像註冊
- 採取兩個圖像,實現Canny邊緣檢測
- 使用FFT找出移動和刪除移位
- 圖像變換極性域名,並找到移動和轉換弧度回答
在某些情況下,我可以得到正確的答案,但在其他情況下,我的換檔角度爲(0,0),旋轉角度爲0弧度。請提出可能發生這種情況的原因。
下面是代碼:
class Register:
'''
Class for registering images based on FFT. The usage is as follows:
>>> im0 = imread('image0.jpg', flatten = True)
>>> im1 = imread('image1.jpg', flatten = True)
>>> reg = Register(im0, im1)
>>> shift = reg.shift
>>> rotation = reg.theta
Note:
1. This image registration technique is not very reliable and
is valid only for small rotation
2. The class is very slow, since it depends on canny edge detection
module for finding edges.
'''
def __init__(self,imin0, imin1, PROCESSED = False):
'''
This method is used to execute all the routines required to get the
shift and the rotation
'''
# find edges to remove low frequency signals and suppress information
if PROCESSED:
im0 = imin0
im1 = imin1
else:
im0 = Canny(imin0, 0.85, 5).grad
im1 = Canny(imin1, 0.85, 5).grad
# A major drawback of this method is that it can operate only on square
# images. Hence we will make square image of any input image
im0 = self.createsquareim(self.clearBorder(im0))
im1 = self.createsquareim(self.clearBorder(im1))
self.shift = self.findShift(im0,im1)
imtrans = shift(im1, self.shift)
# Remove the shift in the image. This is mandatory before we find theta
impolar0 = self.makePolar(im0)
impolar1 = self.makePolar(imtrans)
self.index = self.findShift(impolar0, impolar1)[1]
self.theta = ((self.index*90.0)/impolar1.shape[0])
def clearBorder(self,im,width = 50, color = 255):
'''
A little house keeping to clear any border noise
'''
im[:,:width] = color
im[:,-width:] = color
im[:width,:] = color
im[-width:,:] = color
return im
def createsquareim(self, im):
"""
function createsquareim
input:numpy ndarray
output:numpy ndarray
The function takes in an image array and converts it into square
image by creating empty columns and rows.
"""
lenmax = max(im.shape[0],im.shape[1])
imout = zeros((lenmax,lenmax))
imout[:,:] = 255
imout[:im.shape[0],:im.shape[1]] = im
return imout
def findShift(self, im0, im1):
'''
This method is based on fft method of registering images.
'''
IM0 = fft2(im0)
IM1 = fft2(im1)
numer = IM0*conj(IM1)
denom = abs(IM0*IM1)
pulse_im = ifft2(numer/denom)
mag = abs(pulse_im)
x, y = where(mag == mag.max())
x = array(x.tolist()) # Issues with read only arrays
y = array(y.tolist())
X, Y = im0.shape
if x > X/2:
x -= X
if y > Y/2:
y -= Y
return [x[0], y[0]]
def makePolar(self, im):
'''
This method will convert the cartesian coordinates image
to polar coordinates image. The relation between the two
domains is
F(r,theta) = f(r*cos(theta),r*sin(theta))
To make the process fast, we are using map_coordinates function
'''
m, n = im.shape
r_max = hypot(m, n)
r_mat = zeros_like(im)
t_mat = zeros_like(im)
r_mat.T[:] = linspace(0, r_max, m)
t_mat[:] = linspace(0, pi/2, n)
x = r_mat*cos(t_mat)
y = r_mat*sin(t_mat)
imout = zeros_like(im)
imout = map_coordinates(im, [x, y], cval = 255)
return imout
需要看到一些代碼是有幫助的。此外,你正在使用什麼圖像庫? – DeaconDesperado
我使用scipy編碼了所有東西。沒有圖像處理庫。 – Vishwanath