我想檢測我的形象不是方形(標記)更多,因爲我在這裏問Detect Marker Position in 2D image的OpenCV - C++到Java - 模板匹配
有一個傢伙,給我看C++的解決方案,這是:
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
//See: http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
//See: http://answers.opencv.org/question/60382/detect-markers-position-in-2d-images/
int main() {
cv::Mat img, templateImg, result;
cv::VideoCapture capture("http://answers.opencv.org/upfiles/14297307634571599.png");
if(capture.isOpened()) {
capture >> img;
} else {
return -1;
}
capture = cv::VideoCapture("http://answers.opencv.org/upfiles/14297308125543022.png");
if(capture.isOpened()) {
capture >> templateImg;
} else {
return -1;
}
/// Reduce the size of the image to display it on my screen
cv::resize(img, img, cv::Size(), 0.5, 0.5);
/// Reduce the size of the template image
/// (first to fit the size used to create the image test, second to fit the size of the reduced image)
cv::resize(templateImg, templateImg, cv::Size(), 0.25, 0.25);
cv::Mat img_display;
img.copyTo(img_display);
// Create the result matrix
int result_cols = img.cols - templateImg.cols + 1;
int result_rows = img.rows - templateImg.rows + 1;
result.create(result_rows, result_cols, CV_32FC1);
/// Do the Matching and Normalize
cv::matchTemplate(img, templateImg, result, CV_TM_CCORR_NORMED);
cv::normalize(result, result, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());
/// Localizing the best match with minMaxLoc
double minVal; double maxVal; cv::Point minLoc; cv::Point maxLoc;
cv::Point matchLoc;
for(;;) {
cv::minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat());
matchLoc = maxLoc;
std::cout << "Max correlation=" << maxVal << std::endl;
if(maxVal < 0.8) {
break;
}
/// Show me what you got
cv::rectangle(img_display, matchLoc, cv::Point(matchLoc.x + templateImg.cols , matchLoc.y + templateImg.rows),
cv::Scalar::all(0), 2, 8, 0);
cv::rectangle(result, cv::Point(matchLoc.x - templateImg.cols/2 , matchLoc.y - templateImg.rows/2),
cv::Point(matchLoc.x + templateImg.cols/2 , matchLoc.y + templateImg.rows/2), cv::Scalar::all(0), 2, 8, 0);
cv::imshow("result", result);
cv::waitKey(0);
/// Fill the detected location with a rectangle of zero
cv::rectangle(result, cv::Point(matchLoc.x - templateImg.cols/2 , matchLoc.y - templateImg.rows/2),
cv::Point(matchLoc.x + templateImg.cols/2 , matchLoc.y + templateImg.rows/2), cv::Scalar::all(0), -1);
} while (maxVal > 0.9);
cv::imshow("result", result);
cv::imshow("img_display", img_display);
cv::waitKey(0);
return 0;
}
for循環負責找到一個以上的標記,並檢測它,我想它適應我的Java代碼,我在這裏得到一個無限循環是我的代碼:
public void run(String inFile, String templateFile, String outFile, int match_method) {
System.out.println("\nRunning Template Matching");
Mat img = Highgui.imread(inFile);
Mat templ = Highgui.imread(templateFile);
///Create the result matrix
int result_cols = img.cols() - templ.cols() + 1;
int result_rows = img.rows() - templ.rows() + 1;
Mat result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
///Do the Matching and Normalize
Imgproc.matchTemplate(img, templ, result, match_method);
Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
Point matchLoc;
Point maxLoc;
Point minLoc;
MinMaxLocResult mmr;
boolean iterate = true;
while(iterate){
///Localizing the best match with minMaxLoc
mmr = Core.minMaxLoc(result);
matchLoc = mmr.maxLoc;
if(mmr.maxVal < 0.8)
{
iterate = false;
}
///Show me what you got
Core.rectangle(img, matchLoc, new Point(matchLoc.x + templ.cols(),
matchLoc.y + templ.rows()), new Scalar(0, 255, 0));
}
// Save the visualized detection.
System.out.println("Writing "+ outFile);
Highgui.imwrite(outFile, img);
}
我n注意函數minMaxLoc在C++中比在java中有更多的參數,也許這就是問題所在?爲什麼我不能在java中獲得相同的行爲,有人可以幫助我嗎?
非常感謝你提前
它幫助了很多,我更改了我在java中的代碼,現在正在工作,這裏是:http://pastebin.com/HXP9JaMN 非常感謝! ;) – TiagoM
我注意到模板匹配無法檢測到我的黑色方塊,我將需要使用@RobAu解決方案... – TiagoM
這很好。你的問題似乎更多地解決標題爲Opencv C++到Java的無限循環問題 - 模板匹配。你可以在這裏搜索stackoverflow,以獲得更多與模板匹配相關的問題或查找圖像中的正方形或對象。 – sriram