0
我在熊貓身邊玩弄了一些財務時間序列數據,並且試圖對某些時間戳數據進行重新取樣。這是起始數據:Python熊貓時間序列重新取樣函數延長時間索引
start_data
Out[12]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 749880 entries, 2012-07-06 03:00:00 to 2013-09-11 23:59:00
Data columns (total 1 columns):
TickMean 749880 non-null values
dtypes: float64(1)
start_data.TickMean
Out[18]:
2012-07-06 03:00:00 1.541194
2012-07-06 03:01:00 1.541216
2012-07-06 03:02:00 1.541201
2012-07-06 03:03:00 1.541088
2012-07-06 03:04:00 1.540999
2012-07-06 03:05:00 1.541011
2012-07-06 03:06:00 1.541090
2012-07-06 03:07:00 1.541256
2012-07-06 03:08:00 1.541341
2012-07-06 03:09:00 1.541386
2012-07-06 03:10:00 1.541511
2012-07-06 03:11:00 1.541469
2012-07-06 03:12:00 1.541506
2012-07-06 03:13:00 1.541584
2012-07-06 03:14:00 1.541453
...
2013-09-11 23:45:00 1.602015
2013-09-11 23:46:00 1.602015
2013-09-11 23:47:00 1.602015
2013-09-11 23:48:00 1.602015
2013-09-11 23:49:00 1.602015
2013-09-11 23:50:00 1.602015
2013-09-11 23:51:00 1.602015
2013-09-11 23:52:00 1.602015
2013-09-11 23:53:00 1.602015
2013-09-11 23:54:00 1.602015
2013-09-11 23:55:00 1.602015
2013-09-11 23:56:00 1.602015
2013-09-11 23:57:00 1.602015
2013-09-11 23:58:00 1.602015
2013-09-11 23:59:00 1.602015
Name: TickMean, Length: 749880, dtype: float64
,當我嘗試了40分鐘的重採樣,時間範圍擴大:
start_data = start_data.resample('40min')
start_data
Out[14]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 25344 entries, 2012-01-07 00:00:00 to 2013-12-10 23:20:00
Freq: 40T
Data columns (total 1 columns):
TickMean 18749 non-null values
dtypes: float64(1)
start_data.TickMean
Out[15]:
2012-01-07 00:00:00 1.5706
2012-01-07 00:40:00 1.5706
2012-01-07 01:20:00 1.5706
2012-01-07 02:00:00 1.5706
2012-01-07 02:40:00 1.5706
2012-01-07 03:20:00 1.5706
2012-01-07 04:00:00 1.5706
2012-01-07 04:40:00 1.5706
2012-01-07 05:20:00 1.5706
2012-01-07 06:00:00 1.5706
2012-01-07 06:40:00 1.5706
2012-01-07 07:20:00 1.5706
2012-01-07 08:00:00 1.5706
2012-01-07 08:40:00 1.5706
2012-01-07 09:20:00 1.5706
...
2013-12-10 14:00:00 1.594563
2013-12-10 14:40:00 1.594796
2013-12-10 15:20:00 1.594766
2013-12-10 16:00:00 1.593523
2013-12-10 16:40:00 1.593171
2013-12-10 17:20:00 1.593702
2013-12-10 18:00:00 1.595145
2013-12-10 18:40:00 1.595796
2013-12-10 19:20:00 1.595527
2013-12-10 20:00:00 1.595099
2013-12-10 20:40:00 1.595060
2013-12-10 21:20:00 1.595575
2013-12-10 22:00:00 1.595575
2013-12-10 22:40:00 1.595575
2013-12-10 23:20:00 1.595575
Freq: 40T, Name: TickMean, Length: 25344, dtype: float64
我覺得我失去了一些東西明顯。它爲什麼這樣做?
快速編輯:我知道40分鐘的頻率很奇怪,但其他頻率有相同的效果。
編輯2:是的,這是愚蠢的。我認爲索引將被排序。編輯3:作爲任何遇到這樣奇怪問題的人的獎勵,我的日期數據是第一天,而不是第一個月。所以也扔掉了一切。這是使用dayfirst = True選項解決的。
ask_data.index = pd.to_datetime(ask_data.index, dayfirst=True)
ask_data
Out[34]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 749880 entries, 2012-06-07 03:00:00 to 2013-11-09 23:59:00
Data columns (total 5 columns):
Open 749880 non-null values
High 749880 non-null values
Low 749880 non-null values
Close 749880 non-null values
Volume 749880 non-null values
dtypes: float64(5)
ask_data.index.min()
Out[35]: Timestamp('2012-06-07 03:00:00', tz=None)
ask_data.index.max()
Out[36]: Timestamp('2013-11-09 23:59:00', tz=None)
是的,就是這樣。編輯添加,謝謝! – user1644030