所以,正如我在上面的評論中提到的,一種解決方案是分別爲每個組件計算佈局。這很簡單,即使需要一些代碼才能正確執行。以下代碼適用於任意數量的組件。拓撲排序中的第一個頂點用作每個樹的根節點。
require(igraph)
## Some data
parents <- c("A", "A", "C", "C", "F", "F", "H", "I")
children <- c("B", "C", "D", "E", "G", "H", "I", "J")
begats <- data.frame(parents=parents, children=children)
graph_begats <- graph.data.frame(begats)
## Decompose the graph, individual layouts
comp <- decompose.graph(graph_begats)
roots <- sapply(lapply(comp, topological.sort), head, n=1)
coords <- mapply(FUN=layout.reingold.tilford, comp,
root=roots, SIMPLIFY=FALSE)
## Put the graphs side by side, roots on the top
width <- sapply(coords, function(x) { r <- range(x[, 1]); r[2] - r[1] })
gap <- 0.5
shift <- c(0, cumsum(width[-length(width)] + gap))
ncoords <- mapply(FUN=function(mat, shift) {
mat[,1] <- mat[,1] - min(mat[,1]) + shift
mat[,2] <- mat[,2] - max(mat[,2])
mat
}, coords, shift, SIMPLIFY=FALSE)
## Put together the coordinates for the original graph,
## based on the names of the vertices
lay <- matrix(0, ncol=2, nrow=vcount(graph_begats))
for (i in seq_along(comp)) {
lay[match(V(comp[[i]])$name, V(graph_begats)$name),] <- ncoords[[i]]
}
## Plot everything
par(mar=c(0,0,0,0))
plot(graph_begats, layout=lay)
![plot](https://i.stack.imgur.com/4x3UA.png)
如果我能想出如何A)計算離散譜系的數量在數據集中,和B)分配給每個頂點到其譜系,我會的方式到75%解決我的問題。 – 2013-03-21 23:16:33
使用'clusters()'或'decompose.graph()'分開網絡,然後分別計算每個網格的佈局,然後通過移動其中一個佈局矩陣來合併它們。 – 2013-03-22 01:09:44
是的! 'decompose.graph()'是我需要的。仍然在矩陣轉換工作,但我到了那裏。 – 2013-03-22 14:15:13