您可以從您的df中選擇並呼叫count
通過axis=1
:
In [24]:
df['count'] = df[list('abcde')].count(axis=1)
df
Out[24]:
Close a b c d e Time count
2015-12-03 2051.25 5 4 3 1 1 05:00:00 5
2015-12-04 2088.25 5 4 3 1 NaN 06:00:00 4
2015-12-07 2081.50 5 4 3 NaN NaN 07:00:00 3
2015-12-08 2058.25 5 4 NaN NaN NaN 08:00:00 2
2015-12-09 2042.25 5 NaN NaN NaN NaN 09:00:00 1
的時間設置
In [25]:
%timeit df[['a', 'b', 'c', 'd', 'e']].apply(lambda x: sum(x.notnull()), axis=1)
%timeit df.drop(['Close', 'Time'], axis=1).count(axis=1)
%timeit df[list('abcde')].count(axis=1)
100 loops, best of 3: 3.28 ms per loop
100 loops, best of 3: 2.76 ms per loop
100 loops, best of 3: 2.98 ms per loop
apply
是不是一個驚喜最慢的drop
版本稍快,但在語義上我更喜歡只是路過感興趣的cols的名單,並呼籲count
的可讀性
嗯我現在不斷變化的時間:
In [27]:
%timeit df[['a', 'b', 'c', 'd', 'e']].apply(lambda x: sum(x.notnull()), axis=1)
%timeit df.drop(['Close', 'Time'], axis=1).count(axis=1)
%timeit df[list('abcde')].count(axis=1)
%timeit df[['a', 'b', 'c', 'd', 'e']].count(axis=1)
100 loops, best of 3: 3.33 ms per loop
100 loops, best of 3: 2.7 ms per loop
100 loops, best of 3: 2.7 ms per loop
100 loops, best of 3: 2.57 ms per loop
更多的時間設置
In [160]:
%timeit df[['a', 'b', 'c', 'd', 'e']].apply(lambda x: sum(x.notnull()), axis=1)
%timeit df.drop(['Close', 'Time'], axis=1).count(axis=1)
%timeit df[list('abcde')].count(axis=1)
%timeit df[['a', 'b', 'c', 'd', 'e']].count(axis=1)
%timeit df[list('abcde')].notnull().sum(axis=1)
1000 loops, best of 3: 1.4 ms per loop
1000 loops, best of 3: 1.14 ms per loop
1000 loops, best of 3: 1.11 ms per loop
1000 loops, best of 3: 1.11 ms per loop
1000 loops, best of 3: 1.05 ms per loop
看來,測試notnull
和總結(如notnull
會產生一個布爾掩碼)是該數據集
快上5萬的行DF的最後一個方法是稍快:
In [172]:
%timeit df[['a', 'b', 'c', 'd', 'e']].apply(lambda x: sum(x.notnull()), axis=1)
%timeit df.drop(['Close', 'Time'], axis=1).count(axis=1)
%timeit df[list('abcde')].count(axis=1)
%timeit df[['a', 'b', 'c', 'd', 'e']].count(axis=1)
%timeit df[list('abcde')].notnull().sum(axis=1)
1 loops, best of 3: 5.83 s per loop
100 loops, best of 3: 6.15 ms per loop
100 loops, best of 3: 6.49 ms per loop
100 loops, best of 3: 6.04 ms per loop
您所需的df與您的起始df完全不同,您有額外的'NaN'值從第二行開始到最後一行 – EdChum
謝謝,糾正了錯字 – hernanavella