2017-08-16 97 views
0

使用ScipyOptimizerInterface當我嘗試使用ScipyOptimizerInterface優化某些功能。我試圖運行下面的代碼片段(從tensorflow文檔稍微修改),以獲得它如何工作的一些想法。類型錯誤在tensorflow

vector = tf.Variable([7., 7.], 'vector') 
# Make vector norm as small as possible. 
loss = tf.reduce_sum(tf.square(vector)) 

optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, options={'maxiter': 100}) 

with tf.Session() as session: 
    optimizer.minimize(session) 
# The value of vector should now be [0., 0.]. 

然而,我得到了以下錯誤消息:

--------------------------------------------------------------------------- 
TypeError         Traceback (most recent call last) 
<ipython-input-27-e81545f4bb15> in <module>() 
     4 loss = tf.reduce_sum(tf.square(vector)) 
     5 
----> 6 optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, options={'maxiter': 100}) 
     7 
     8 with tf.Session() as session: 

/s/anaconda/....../miniconda2/lib/python2.7/site-packages/tensorflow/contrib/opt/python/training/external_optimizer.pyc in __init__(self, loss, var_list, equalities, inequalities, var_to_bounds, **optimizer_kwargs) 
    124  self.optimizer_kwargs = optimizer_kwargs 
    125 
--> 126  self._packed_var = self._pack(self._vars) 
    127  self._packed_loss_grad = self._pack(loss_grads) 
    128  self._packed_equality_grads = [ 

/s/anaconda/...../miniconda2/lib/python2.7/site-packages/tensorflow/contrib/opt/python/training/external_optimizer.pyc in _pack(cls, tensors) 
    257  else: 
    258  flattened = [array_ops.reshape(tensor, [-1]) for tensor in tensors] 
--> 259  return array_ops.concat(flattened, 0) 
    260 
    261 def _make_eval_func(self, tensors, session, feed_dict, fetches, 

/s/anaconda/...../miniconda2/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.pyc in concat(values, axis, name) 
    1064 return gen_array_ops._concat_v2(values=values, 
    1065         axis=axis, 
-> 1066         name=name) 
    1067 
    1068 

/s/anaconda/...../miniconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.pyc in _concat_v2(values, axis, name) 
    493 """ 
    494 result = _op_def_lib.apply_op("ConcatV2", values=values, axis=axis, 
--> 495         name=name) 
    496 return result 
    497 

/s/anaconda/...../miniconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.pyc in apply_op(self, op_type_name, name, **keywords) 
    461         (prefix, dtype.name)) 
    462    else: 
--> 463     raise TypeError("%s that don't all match." % prefix) 
    464    else: 
    465    raise TypeError("%s that are invalid." % prefix) 

TypeError: Tensors in list passed to 'values' of 'ConcatV2' Op have types [float64, float32, float32, float32, float32, float32, float32, float32, float32, float64, float64, float32, float32, float32, float32, float32, float32, float32, float32, float32, float64, float32, float32] that don't all match. 

我使用tensorflow從連續分析1.3.0-RC0和python 2.7.12。你能否告訴我們如何解決這個問題,並防止它發生?

+0

錯誤似乎很清楚,您傳遞的張量列表不匹配類型。您可能需要找到某種方法將丟失對象轉換爲所有Float64的列表(以保持完整的精度)。 – csunday95

+0

嗨csunday 95!謝謝你的評論!我的確嘗試過使用下面的代碼:loss = tf.cast(tf.reduce_sum(tf.square(vector)),dtype = tf.float32)但編譯器仍然抱怨第一個參數和其他兩個在initilization優化器是float64! – Kratos1808

回答

0

以下代碼適用於張量流版本1.2.0。您還需要初始化變量。

import tensorflow as tf 
vector = tf.Variable([7., 7.], 'vector') 
# Make vector norm as small as possible. 
loss = tf.reduce_sum(tf.square(vector)) 


optimizer = tf.contrib.opt.ScipyOptimizerInterface(
    loss, options={'maxiter': 100}) 

with tf.Session() as session: 
    session.run(tf.global_variables_initializer()) 
    print(session.run(vector)) # results: [7.0, 7.0] 
    optimizer.minimize(session) 
    print(session.run(vector)) # results: [ -1.88996808e-06 -1.88996808e-06] 
+0

嗨Ishant先生!非常感謝您的快速響應!我試圖運行你的代碼,但得到了同樣的錯誤。在我看來,編譯器非常挑剔,並且在啓動優化器時會引發錯誤。順便說一下,我在jupyter筆記本上運行代碼。 – Kratos1808

+0

這個問題可能與您的tensorflow版本或jupyter有關。 –

+0

謝謝Ishant!我會檢查你提到的那兩件事。 – Kratos1808