2016-12-13 69 views
0

我試圖教我的多層神經網絡XOR函數。我有一個架構網絡[2,2,1]。我將損失定義爲平方誤差的總和(我知道這並不理想,但我需要這樣)。如果我將所有圖層的激活函數設置爲sigmoid函數,我總會陷入局部最優(0.25左右,所有輸出大約爲0.5)。如果我將隱藏層的激活函數更改爲ReLU,我有時會陷入相同的最佳狀態,但有時我會解決它。難道這是因爲我使用均方誤差而不是交叉熵?以防萬一,這是我的神經網絡代碼:教完全連接的前饋神經網絡XOR函數

import tensorflow as tf 

def weight_variable(shape): 
    initial = tf.truncated_normal(shape, stddev=0.5) 
    return tf.Variable(initial) 

def bias_variable(shape): 
    initial = tf.constant(0.1, shape=shape) 
    return tf.Variable(initial) 

class FCLayer(): 
    def __init__(self, inputs, outputs, activation): 
     self.W = weight_variable([inputs, outputs]) 
     self.b = bias_variable([outputs]) 
     self.activation = activation 

    def forward(self, X): 
     s = tf.matmul(X, self.W) + self.b 
     return self.activation(s) 

class Network: 
    def __init__(self, architecture, activations=None): 

     self.layers = [] 

     for i in range(len(architecture)-1): 
      self.layers.append(FCLayer(architecture[i], architecture[i+1], 
             tf.nn.sigmoid if activations==None else activations[i])) 

     self.x = tf.placeholder(tf.float32, shape=[None, architecture[0]]) 

     self.out = self.x 
     for l in self.layers: 
      self.out = l.forward(self.out) 

     self.session = tf.Session(); 
     self.session.run(tf.initialize_all_variables()) 

    def train(self, X, Y_, lr, niter): 

     y = tf.placeholder(tf.float32, shape=[None, Y_.shape[1]]) 
     loss = tf.reduce_mean((self.out - y)**2) 
     #loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(self.out, y)) 

     train_step = tf.train.GradientDescentOptimizer(lr).minimize(loss) 

     errs = []; 
     for i in range(niter): 
      train_step.run(feed_dict={self.x: X, y: Y_},session=self.session) 
      errs.append(loss.eval(feed_dict={self.x: X, y: Y_},session=self.session)) 

     return errs; 

    def predict(self, X): 
     return self.out.eval(feed_dict={self.x: X}, session = self.session) 

更新:我嘗試了更復雜的架構([2,2,2,1]),但仍然沒有成功。

回答

0

解決了它,由於某種原因,0.1的學習率太小了。我會說這個問題解決了,我只需要提高學習率。