1
我試圖預測csv格式的銅礦企業數據的數據集中未來的利潤數據。如何在scikit中不標準化目標數據學習迴歸
我讀出的數據:
data = pd.read_csv('data.csv')
我分割數據:
data_target = data[target].astype(float)
data_used = data.drop(['Periodo', 'utilidad_operativa_dolar'], axis=1)
x_train, x_test, y_train, y_test = train_test_split(data_used, data_target, test_size=0.4,random_state=33)
創建SVR預測:
clf_svr= svm.SVR(kernel='rbf')
Standarize數據:
from sklearn.preprocessing import StandardScaler
scalerX = StandardScaler().fit(x_train)
scalery = StandardScaler().fit(y_train)
x_train = scalerX.transform(x_train)
y_train = scalery.transform(y_train)
x_test = scalerX.transform(x_test)
y_test = scalery.transform(y_test)
print np.max(x_train), np.min(x_train), np.mean(x_train), np.max(y_train), np.min(y_train), np.mean(y_train)
然後預測:
y_pred=clf.predict(x_test)
和預測數據被標化,以及。我想要預測的數據是原始格式,我該怎麼做?
謝謝!,我沒有把我的眼睛放在inverse_transform()上,對我感到羞恥。 – 2014-10-28 05:47:12