PHP逆矩陣
回答
您可以使用梨包Math_Matrix爲此。
這個package claims能夠做你正在尋找的東西。
有這個開源的PHP Library是能夠反轉矩陣。
所有你需要做的是
<?php
include_once ("Matrix.class.php");
$matrixA = new Matrix(array(array(0, 1), array(2, 6)));
echo $matrixA->getInverse()->getMathMl();
?>
/**
* matrix_inverse
*
* Matrix Inverse
* Guass-Jordan Elimination Method
* Reduced Row Eshelon Form (RREF)
*
* In linear algebra an n-by-n (square) matrix A is called invertible (some
* authors use nonsingular or nondegenerate) if there exists an n-by-n matrix B
* such that AB = BA = In where In denotes the n-by-n identity matrix and the
* multiplication used is ordinary matrix multiplication. If this is the case,
* then the matrix B is uniquely determined by A and is called the inverse of A,
* denoted by A-1. It follows from the theory of matrices that if for finite
* square matrices A and B, then also non-square matrices (m-by-n matrices for
* which m ? n) do not have an inverse. However, in some cases such a matrix may
* have a left inverse or right inverse. If A is m-by-n and the rank of A is
* equal to n, then A has a left inverse: an n-by-m matrix B such that BA = I.
* If A has rank m, then it has a right inverse: an n-by-m matrix B such that
* AB = I.
*
* A square matrix that is not invertible is called singular or degenerate. A
* square matrix is singular if and only if its determinant is 0. Singular
* matrices are rare in the sense that if you pick a random square matrix over
* a continuous uniform distribution on its entries, it will almost surely not
* be singular.
*
* While the most common case is that of matrices over the real or complex
* numbers, all these definitions can be given for matrices over any commutative
* ring. However, in this case the condition for a square matrix to be
* invertible is that its determinant is invertible in the ring, which in
* general is a much stricter requirement than being nonzero. The conditions for
* existence of left-inverse resp. right-inverse are more complicated since a
* notion of rank does not exist over rings.
*/
public function matrix_inverse($m1)
{
$rows = $this->rows($m1);
$cols = $this->columns($m1);
if ($rows != $cols)
{
die("Matrim1 is not square. Can not be inverted.");
}
$m2 = $this->eye($rows);
for ($j = 0; $j < $cols; $j++)
{
$factor = $m1[$j][$j];
if ($this->debug)
{
fms_writeln('Divide Row [' . $j . '] by ' . $m1[$j][$j] . ' (to
give us a "1" in the desired position):');
}
$m1 = $this->rref_div($m1, $j, $factor);
$m2 = $this->rref_div($m2, $j, $factor);
if ($this->debug)
{
$this->disp2($m1, $m2);
}
for ($i = 0; $i < $rows; $i++)
{
if ($i != $j)
{
$factor = $m1[$i][$j];
if ($this->debug)
{
$this->writeln('Row[' . $i . '] - ' . number_format($factor, 4) . ' ×
Row[' . $j . '] (to give us 0 in the desired position):');
}
$m1 = $this->rref_sub($m1, $i, $factor, $j);
$m2 = $this->rref_sub($m2, $i, $factor, $j);
if ($this->debug)
{
$this->disp2($m1, $m2);
}
}
}
}
return $m2;
}
這段代碼有一堆對'$ this'函數的非平凡引用,它們從不顯示。沒有這個背景,代碼很不幸沒用。 – 2014-04-20 14:50:55
這裏測試的代碼https://gist.github.com/unix1/7510208 只有identity_matrix()和反轉()函數足夠
圖書館似乎不再可用 – 2014-05-09 12:12:19
@MarkBaker它絕對可用 - 該要旨始終是公開的,自2013年11月成立以來一直在該位置。免責聲明:我是該主旨的作者。 – 2016-04-04 15:42:44
- 1. 矩陣逆Swift
- 2. 逆矩陣3f
- 3. 矩陣求逆R
- 4. 逆矩陣誤差
- 5. JavaScript矩陣求逆
- 6. Python的逆矩陣
- 7. 乘以逆矩陣?
- 8. 查找逆矩陣
- 9. Python中的矩陣和逆矩陣
- 10. 矩陣模板庫矩陣求逆
- 11. 得到一個PHP矩陣的逆
- 12. Python:計算僞逆矩陣的逆
- 13. Stata逆矩陣函數
- 14. 矩陣求逆或Cholesky?
- 15. 矩陣求逆方法
- 16. OpenCL中的矩陣求逆
- 17. 加快numpy矩陣逆
- 18. 矩陣乘法逆加密
- 19. R中的矩陣的逆
- 20. SymPy中矩陣的逆?
- 21. 逆矩陣的在C++
- 22. 逆矩陣和乘法
- 23. C++的PETSc矩陣求逆
- 24. 圖像矩陣的逆
- 25. Cayley-Hamilton方法矩陣逆
- 26. glsl es 2.0逆矩陣
- 27. java中的矩陣的逆
- 28. Java逆矩陣計算
- 29. CUDA中非矩形矩陣的計算機逆矩陣
- 30. 如何使用JAMA(Java矩陣包)計算矩陣的僞逆矩陣?
該鏈接不產生頁面。 – monksy 2009-11-28 01:32:27
哇。梨頁真的不喜歡那個鏈接。自己去了那裏,試圖糾正這個聯繫。同樣的問題。似乎無法直接鏈接到它。只需點擊頂部菜單上的搜索包,然後搜索矩陣 – 2009-11-28 01:35:52
正確的鏈接是pear.php.net/package/Math-Matrix (對不起,但我不能編輯您的文章以更正鏈接) – Eineki 2009-11-28 01:50:00