1
我正在使用張量流來構建卷積神經網絡。給定形狀的張量(無,16,16,4,192),我想要執行轉置卷積,導致形狀(無,32,32,7,192)。轉置卷積(反捲積)算法
[2,2,4,192,192]的篩選器大小和[2,2,1,1,1]的步幅會產生我想要的輸出形狀嗎?
我正在使用張量流來構建卷積神經網絡。給定形狀的張量(無,16,16,4,192),我想要執行轉置卷積,導致形狀(無,32,32,7,192)。轉置卷積(反捲積)算法
[2,2,4,192,192]的篩選器大小和[2,2,1,1,1]的步幅會產生我想要的輸出形狀嗎?
是的,你幾乎是正確的。
一個次要校正是tf.nn.conv3d_transpose
預計NCDHW
NDHWC
或輸入格式(你看上去是NHWDC
)和所述過濾器的形狀預期爲[depth, height, width, output_channels, in_channels]
。這會影響尺寸在filter
和stride
順序:
# Original format: NHWDC.
original = tf.placeholder(dtype=tf.float32, shape=[None, 16, 16, 4, 192])
print original.shape
# Convert to NDHWC format.
input = tf.reshape(original, shape=[-1, 4, 16, 16, 192])
print input.shape
# input shape: [batch, depth, height, width, in_channels].
# filter shape: [depth, height, width, output_channels, in_channels].
# output shape: [batch, depth, height, width, output_channels].
filter = tf.get_variable('filter', shape=[4, 2, 2, 192, 192], dtype=tf.float32)
conv = tf.nn.conv3d_transpose(input,
filter=filter,
output_shape=[-1, 7, 32, 32, 192],
strides=[1, 1, 2, 2, 1],
padding='SAME')
print conv.shape
final = tf.reshape(conv, shape=[-1, 32, 32, 7, 192])
print final.shape
,輸出:
(?, 16, 16, 4, 192)
(?, 4, 16, 16, 192)
(?, 7, 32, 32, 192)
(?, 32, 32, 7, 192)
會發生什麼事,如果你嘗試了嗎? – mrry