2017-08-31 71 views
1

我曾嘗試在Tensorflow中實施丟包。Tensorflow Dropout實施,測試準確性=訓練準確性和低,爲什麼?

我的確知道,在訓練和測試過程中,應該將dropout聲明爲佔位符,keep_prob參數應該是不同的。然而,仍然幾乎打破了我的大腦試圖找到爲什麼退出的準確性是如此之低。當keep_drop = 1時,列車精度爲99%,測試精度爲85%,keep_drop = 0.5,列車和測試精度均爲16%任何想法在哪裏查看,任何人?謝謝!

def forward_propagation(X, parameters, keep_prob): 
""" 
Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX 

Arguments: 
X -- input dataset placeholder, of shape (input size, number of examples) 
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" 
       the shapes are given in initialize_parameters 

Returns: 
Z3 -- the output of the last LINEAR unit 
""" 
# Retrieve the parameters from the dictionary "parameters" 
W1 = parameters['W1'] 
b1 = parameters['b1'] 
W2 = parameters['W2'] 
b2 = parameters['b2'] 
W3 = parameters['W3'] 
b3 = parameters['b3'] 


Z1 = tf.add(tf.matmul(W1,X),b1)      # Z1 = np.dot(W1, X) + b1 
A1 = tf.nn.relu(Z1)         # A1 = relu(Z1) 
A1 = tf.nn.dropout(A1,keep_prob)     # apply dropout 
Z2 = tf.add(tf.matmul(W2,A1),b2)     # Z2 = np.dot(W2, a1) + b2 
A2 = tf.nn.relu(Z2)         # A2 = relu(Z2) 
A2 = tf.nn.dropout(A2,keep_prob)     # apply dropout 
Z3 = tf.add(tf.matmul(W3,A2),b3)     # Z3 = np.dot(W3,A2) + b3 


return Z3 



def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, lambd = 0.03, train_keep_prob = 0.5, 
     num_epochs = 800, minibatch_size = 32, print_cost = True): 
""" 
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. 

Arguments: 
X_train -- training set, of shape (input size = 12288, number of training examples = 1080) 
Y_train -- test set, of shape (output size = 6, number of training examples = 1080) 
X_test -- training set, of shape (input size = 12288, number of training examples = 120) 
Y_test -- test set, of shape (output size = 6, number of test examples = 120) 
learning_rate -- learning rate of the optimization 
lambd -- L2 regularization hyperparameter 
train_keep_prob -- probability of keeping a neuron in hidden layer for dropout implementation 
num_epochs -- number of epochs of the optimization loop 
minibatch_size -- size of a minibatch 
print_cost -- True to print the cost every 100 epochs 

Returns: 
parameters -- parameters learnt by the model. They can then be used to predict. 
""" 

ops.reset_default_graph()       # to be able to rerun the model without overwriting tf variables 
tf.set_random_seed(1)        # to keep consistent results 
seed = 3           # to keep consistent results 
(n_x, m) = X_train.shape       # (n_x: input size, m : number of examples in the train set) 
n_y = Y_train.shape[0]       # n_y : output size 
costs = []          # To keep track of the cost 


# Create Placeholders of shape (n_x, n_y) 
X, Y = create_placeholders(n_x, n_y) 
keep_prob = tf.placeholder(tf.float32) 

# Initialize parameters 
parameters = initialize_parameters() 

# Forward propagation: Build the forward propagation in the tensorflow graph 
Z3 = forward_propagation(X, parameters, keep_prob) 

# Cost function: Add cost function to tensorflow graph 
cost = compute_cost(Z3, Y, parameters, lambd) 

# Backpropagation. 
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) 

# Initialize all the variables 
init = tf.global_variables_initializer() 

# Start the session to compute the tensorflow graph 
with tf.Session() as sess: 

    # Run the initialization 
    sess.run(init) 

    # Do the training loop 
    for epoch in range(num_epochs): 

     epoch_cost = 0.      # Defines a cost related to an epoch 
     num_minibatches = int(m/minibatch_size) # number of minibatches of size minibatch_size in the train set 
     seed = seed + 1 
     minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) 

     for minibatch in minibatches: 

      # Select a minibatch 
      (minibatch_X, minibatch_Y) = minibatch 

      # IMPORTANT: The line that runs the graph on a minibatch. 
      # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). 
      _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y, keep_prob: train_keep_prob}) 

      epoch_cost += minibatch_cost/num_minibatches 

     # Print the cost every epoch 
     if print_cost == True and epoch % 100 == 0: 
      print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) 
     if print_cost == True and epoch % 5 == 0: 
      costs.append(epoch_cost) 

    # plot the cost 
    plt.plot(np.squeeze(costs)) 
    plt.ylabel('cost') 
    plt.xlabel('iterations (per tens)') 
    plt.title("Learning rate =" + str(learning_rate)) 
    plt.show() 

    # lets save the parameters in a variable 
    parameters = sess.run(parameters) 
    print ("Parameters have been trained!") 

    # Calculate the correct predictions 
    correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) 

    # Calculate accuracy on the test set 
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

    print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train, keep_prob: 1.0})) 
    print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test, keep_prob: 1.0})) 

    return parameters 
+0

您通常會期望較低的列車精度以及較差的測試精度和較高的測試精度。在這種情況下,您需要更高的keep_prob(> 0.5)或增加圖層的大小。你應該閱讀什麼是輟學/正規化。 – gidim

+0

我認爲我需要澄清的是,沒有丟失列車的準確性99%的測試準確性85%,同時退出訓練和測試的準確性是相同的16%,這是太可疑了。 – Andrey

回答

0

算法是正確的。這只是keep_prob = 0.5太低了。

設法在測試用下列超參數設定87%的準確度: learning_rate = 0.00002,lambd = 0.03,train_keep_prob = 0.90,num_epochs = 1500,minibatch_size = 32,

+0

我想你的網絡很小?您沒有在問題中包含參數。 – lejlot

0

在第一種情況的模型過度擬合了數據,因此列車和測試精度之間的差異很大。丟失是一種正則化技術,通過減少特定節點的影響來減少模型的方差,從而防止過度擬合。但保持keep_prob = 0.5(太低)會削弱模型,因此它對數據的要求不夠嚴格,準確度低至16%。您應該逐漸減少keep_prob值,直到找到合適的值。

相關問題